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A B S T R A C T

This paper describes a manifold of ambiguous spacecraft relative orbits that arise in sequential relative orbit
estimation. The development herein assumes linear relative dynamics, a circular reference orbit, and range-only
measurements. Using a formulation based on relative orbit elements, the ambiguous orbits are categorized into
two cases: mirror orbits, which conserve the size and shape but transform the orientation of the true relative
orbit, and deformed orbits, which both distort the shape and change the orientation. A special case, that of
central ambiguous relative orbits, which are geometrically symmetric relative to the chief's local-vertical-local-
horizontal frame is also discussed. The multiplicity of mirror ambiguous orbits, deformed ambiguous orbits and
central ambiguous orbits are shown to be three, four and infinity, respectively. Numerical results using an
extended Kalman filter are provided to confirm the existence of these ambiguous orbits. Furthermore, the ob-
servability is studied analytically with a nonlinear observability criterion using Lie derivatives. It is also shown
by numerical results that the inclusion of nonlinearities in the filter model can help resist the tendency of an
extended Kalman filter to converge to the ambiguous relative orbits. Finally, the persistence of these ambiguous
orbits under unmodeled chief eccentricity error and J2 perturbation is studied.

1. Introduction

Relative orbit estimation is desirable for many types of spacecraft
missions including close proximity operations such as formation con-
trol, rendezvous, and space-based orbit determination in which relative
navigation between spacecraft is required. Among different relative
orbit navigation strategies, estimation based only on on-board mea-
surements reduces the total operating cost and improves safety against
communication interruptions with ground stations [1–3]. Recently,
relative orbit estimation based on linear dynamics and certain simple
on-board relative measurements such as angles-only or range-only
measurements has received attention in the literature.

In particular, the problem of using angles-only measurements in
relative orbit estimation has been thoroughly discussed in the litera-
ture. For example, Yim et al. [4] numerically studied the observability
of relative orbit estimation by taking line-of-sight (LOS) measurements
with the incorporation of J2 perturbation. Woffiden and Geller [5,6]
discussed relative orbit estimation based on LOS measurements using a
Hill-Clohessy-Wiltshire (HCW) dynamic model [7,8] and discussed the
problem of unobservability in this scenario. Kaufman et al. [9] showed
that with LOS measurements only, the nonlinear relative orbital

dynamics are observable under certain geometric conditions. In con-
trast, only a few recent papers have dealt with the issue of observability
(or lack thereof) using range-only measurements. Rundberg and Lovell
[10] discussed the ambiguous relative orbits in initial relative orbit
determination (IROD) using a minimal number of range-only mea-
surements. Wang et al. [11] studied the lack of observability of linear
dynamics with range-only measurements and also how nonlinearities in
the filter model for an extended Kalman filter (EKF) can improve the
local observability properties. Since only a limited numerical analysis of
the ambiguous orbits using range-only measurements was discussed in
this paper (Wang et al. [11]), a second paper, proposed subsequently by
Wang et al. [12], focused on a systematic analysis of the ambiguous
orbits with range-only measurements using relative orbit elements [13]
(ROEs) as well as the effects of higher order nonlinear models on
avoiding these ambiguous orbits. At the same time, Christian [14] also
developed the explanation and categorization of these ambiguous orbits
by the use of initial Cartesian relative coordinates, which was followed
by a more comprehensive study on the same topic [15]. Compared to
these previous works [10–12,14,15], this new paper offers more details
on the analysis of ambiguous orbits, new insights on the special cate-
gory of central ambiguous orbits, an in-depth analysis of observability
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using the nonlinear observability criteria of Lie derivatives, and a dis-
cussion of the persistence of these ambiguous orbits under unmodeled
chief eccentricity error and J2 perturbation.

This paper begins with a discussion of the reason for the appearance
of ambiguous relative orbits using ROEs. Subsequently, the enumera-
tion and classification of these relative orbits is provided both by using
Cartesian coordinates and geometric properties of the relative orbit.
The condition for the existence of deformed ambiguous relative orbits is
also presented through the solution of a fourth order polynomial. The
special case of a central relative orbit, which has infinite number of
ambiguous orbits is discussed and shown to be unobservable.
Numerical results are given to verify the existence of these ambiguous
orbits. In the light of observability analysis, a nonlinear observability
criterion using Lie derivatives is adopted to analyze the observability of
an estimation scenario using the HCW dynamic model and range-only
measurements. As a means to exclude ambiguities, we explore the
possibility of using higher order nonlinear models to guarantee the
uniqueness of the estimated relative orbit. Finally, the practicality of
using these conclusions for ambiguous orbits is studied with unmodeled
chief eccentricity error and J2 perturbation.

2. Analysis of ambiguous relative orbits

2.1. Conditions of ambiguous orbits

To formulate the HCW dynamics model, which is appropriate for
modeling spacecraft relative motion assuming a circular chief orbit and
small separation between the chief and deputy spacecraft, the local-
vertical-local-horizontal (LVLH) frame [16] (shown in Fig. 1) is used. In
Fig. 1, x denotes the coordinate in the radial direction Ôr , y denotes the
coordinate in the along-track direction Ôθ, and z denotes the coordinate
in the cross-track direction Ôh. The equation of relative motion ex-
pressed in the chief's LVLH frame can be expressed as
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where n is the mean motion (angular speed) of the circular chief orbit.
The problem of ambiguous orbits for range measurements was first

proposed by Wang et al. [11], in which it is shown that when an EKF
based on HCW dynamics and range-only measurements is run, there are
instances in which the estimated orbit does not follow or approach the
true orbit. Instead, the estimated orbit converges to some other am-
biguous orbits orbit, two of which are shown in Fig. 2. The figure re-
presents two separate trials where an EKF was initialized with a par-
ticular state vector and processed range measurements from the chief to
the deputy spacecraft. The range history of the converged estimated
orbits in Fig. 2(a) and (b) both match that of the true orbit under HCW
dynamics. Also, it is apparent that the estimated orbit in Fig. 2(a) re-
sembles a mirror image of the true orbit and conserves its shape, while
the estimated orbit in Fig. 2(b) is deformed in shape compared with the
true orbit. An orbit is defined as an ambiguous orbit of the true orbit by
range if it shares the same range history with the true orbit. Namely,

′ =ρ t ρ t( ) ( ) for all >t 0, where ρ t( ) and ′ρ t( ) are the ranges of the true
and ambiguous orbits at time t respectively. Furthermore, if the am-
biguous orbit conserves the size and shape of the true orbit then it is
classified as a mirror ambiguous orbit; otherwise, it is classified as a
deformed ambiguous orbit.

The analysis of range-only ambiguous orbits is based on the solution
of Eq. (1), which can be expressed in terms of relative orbit elements
[13](ROEs) as
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where ae, zm and xd are constant and represent the in-plane motion
magnitude, the out-of-plane motion magnitude and the drift in radial
direction, while = −y t y nx t( )d d d0

3
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are time dependent and represent the drift in along-track direction, the
in-plane phase angle and the out-of-plane phase angle. It is clear that
a z x y β ψ( , , , , , )e m d d0 0 0 are six constants that can be used to represent
relative orbits.

In the relative orbit estimation problem,
= x t y t z t x t y t z tx [ ( ), ( ), ( ), ˙ ( ), ˙ ( ), ˙ ( )]T denotes the state to be estimated,

and the range between the chief and deputy can be expressed as
= + +ρ t x t y t z t( ) ( ) ( ) ( )2 2 2 . Using the ROEs, the square of range ρ at

time t can be expressed as
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Note that for one orbit to be an ambiguous orbit of the true orbit by
range, its range history ′ρ t( ) must exactly match that of the true orbit
ρ t( ), i.e., ′ =ρ t ρ t( ) ( )2 2 . Since the nine basis functions in Eq. (3) are
linearly independent, the following nine equalities must hold for an
ambiguous orbit,
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where the primed quantities correspond to the ambiguous orbit. It is
noted that if the non-drifting condition =x 0d is satisfied, Eqs. (4f-i)
will vanish. In the following section, we first discuss the ambiguity
under the non-drifting condition (Eqs. (4a-e)) and then check the va-
lidity of the ambiguity once the non-drifting assumption is violated.
First, however, we observe that Eqs. (4d) and (4e) yield

= ′ ′a y a ye d e d0 0 (5)
Fig. 1. Rotating LVLH frame used to describe the relative position of the sa-
tellites.
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