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a b s t r a c t

When a red blood cell (RBC) is driven by a pressure gradient through amicrofluidic channel, its passage or
blockage provides ameasure of the rigidity of the cell. This has beendeveloped as ameans to separate RBCs
according to their mechanical properties, which are known to change with pathological conditions such
as malaria infection. In this study, we use numerical simulations to establish a quantitative connection
between the minimum pressure needed to drive an RBC through a contracting microfluidic channel and
the rigidity of the cell membrane. This provides the basis for designing such devices and interpreting the
experimental data.

© 2015 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Red blood cells (RBCs) are extremely flexible. This allows the
RBCs to pass through microcapillaries of size much smaller than
theirs. When infected by the malaria parasite Plasmodium falci-
parum, the RBC gradually loses its deformability, which leads to
blockage of the blood circulation in microcapillaries. As models for
this process, microfluidic assays have been designed in which the
critical pressure required to push red cells through a contraction is
used as a measure of the cell’s deformability [1,2]. Similar devices
have been used to separate cells according to their size and rigid-
ity [3]. Since RBCs are known to rigidify under pathological condi-
tions such as malaria infection [4], microfluidic channels also hold
promise as a diagnostic and fractionation tool [5]. Compared with
alternative methods to measure mechanical properties of RBCs,
such as cell stretching by optical tweezers [6] andmicropipette as-
piration [7], the microfluidic channel has the advantage of closely
mimicking the flow geometry in vivo.

Ma and coworkers [2,3] have designed a ‘‘microfluidic funnel
ratchet,’’ which consists of a series of contractions followed by
sudden expansions (Fig. 1). In such a device, the critical pressure
drop for pushing the cell through the channel depends on the
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deformability of the cell. The more flexible the cell, the less pres-
sure needed. However, no quantitative correlation exists that
relates the measured critical pressure drop to the shear and bend-
ing moduli of the cell. Ma et al. [2,3] employed the Young–Laplace
equation to estimate the cell’s cortical tension from the measured
critical pressure drop. In this model, the cell was treated as a liquid
drop with a constant cortical tension Tc, which was related to the
critical pressure drop 1Pc through

1Pc = Tc


1
Ra

−
1
Rb


, (1)

where Ra and Rb are the radii of curvature at the cell’s front and
back. However, the cell membrane is elastic and differs consider-
ably from a fluid interface. For example, the in-plane tension will
likely vary along the membrane according to the local strain. Be-
sides, the bending rigidity of the membrane may also play a role.

To address these issues, we carry out numerical simulations
using a more realistic representation of the mechanical properties
of the cell, with an elastic membrane enclosing a viscous cytosol.
The physical model and numerical method are based on the recent
study of Wu and Feng [8]. The cell membrane is represented by a
discrete particle–spring network (Fig. 2(a)), with elasticity against
in-plane strain andbending (Fig. 2(b)). The fluids inside andoutside
of the membrane are discretized by particles as well (Fig. 2(c)),
using the framework of smoothed particle hydrodynamics [9]. We
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Fig. 1. The geometry of the microfluidic device studied by Ma et al. [2,3].
Source: Adapted from Ref. [2] with permission© Royal Society of Chemistry.

use linear springs of an elastic coefficient ks such that the elastic
energy for in-plane deformation is

Es =


i,j

ks
2

(Lij − Lij,0)2, (2)

where the summation is over all pairs of adjacent vertices i and
j, Lij is the length of the spring connecting them, and Lij,0 is its
resting length. In addition, we adopt the following bending energy
[10]:

Eb =
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2


, (3)

where kb is the bending modulus and the summation is over all
pairs of neighboring triangles i and j and θij is the angle between
their normals. Note that this bending energy assumes zero sponta-
neous curvature for the membrane.

The red cells are known to conserve their surface area. In our
particle model, this is implemented through an energy penalty

against local area dilatation:
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2
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where kd is a constant, A
j
0 is the undeformed area of the jth triangle,

and the summation is over all N triangles of the RBC membrane.
Finally, we include an energy penalty against the change of the
total cell volume:

EV =
kv
2
V0


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2

, (5)

where kv is a constant coefficient, and V0 is the initial volume of the
cell. Under large forcing and severe cell deformation, this volume
constraint helps to prevent fluid particles from penetrating the
membrane. Using Eqs. (2)–(5), we write the total elastic energy of
the cell membrane as Em = Es + Eb + EA + EV . The elastic force
acting on each membrane particle can then be calculated as

fm = −∂Em/∂r, (6)

r being the position of the membrane particle.
The fluid motion is solved by using the smoothed particle

hydrodynamics (SPH) method [9]. For the membrane particles, the
elastic force fm is added to the hydrodynamic force on the right-
hand side of themomentumequation.Wehave tested convergence
of the results with respect to spatial resolution. For an initial
particle spacing d ≤ 0.15R0, R0 being the radius of the undeformed
RBC, the numerical results no longer depend on d. Thus, the
simulations have been carried out using d = 0.15R0.

The surface of the undeformed red cell is obtained from the
formula of Evans and Fung [11]:

D(r) =


1 − (r/R0)2


C0 + C1(r/R0)

2
+ C2(r/R0)

4 , (7)

where D(r) is the thickness of the RBC as a function of distance
from the center, and R0 is the RBC’s radius. In our simulation,
we set (R0, C0, C1, C2) = (3.9, 0.81, 7.83, −4.39) µm [12]. With
these parameters, the red cell’s volume and surface area are about
92µm3 and 132µm2, respectively, in agreement with experimen-
tal values [13,14]. The triangular mesh on the cell surface was au-
tomatically created by the commercial software GAMBIT. Once this

Fig. 2. (a) The RBC membrane is modeled by a triangular particle–spring meshwork. (b) Each segment is an elastic spring (Eq. (2)), and there is bending elasticity between
neighboring triangles (Eq. (3)). (c) The interior and exterior fluids are discretized by particles, whose movement approximates the Navier–Stokes equation in the smoothed-
particle-hydrodynamics framework [9].
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