Accepted Manuscript

Effects of atomic oxygen on titanium dioxide thin film

Naoki Shimosako, Yukihiro Hara, Kazunori Shimazaki, Eiji Miyazaki, Hiroshi Sakama

PII: S0094-5765(17)31055-X

DOI: 10.1016/j.actaastro.2018.02.024

Reference: AA 6719

To appear in: Acta Astronautica

Received Date: 28 July 2017

Revised Date: 22 November 2017

Accepted Date: 14 February 2018

Please cite this article as: N. Shimosako, Y. Hara, K. Shimazaki, E. Miyazaki, H. Sakama, Effects of atomic oxygen on titanium dioxide thin film, *Acta Astronautica* (2018), doi: 10.1016/j.actaastro.2018.02.024.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Effects of Atomic Oxygen on Titanium Dioxide Thin Film

Naoki Shimosako^a, Yukihiro Hara^a, Kazunori Shimazaki^b, Eiji Miyazaki^b, Hiroshi Sakama^a

 ^aDepartment of Engineering and Applied Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
^bResearch Unit I, Research and Development Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan

Abstract

In low earth orbit (LEO), atomic oxygen (AO) has shown to cause degradation of organic materials used in spacecrafts. Similar to other metal oxides such as SiO₂, Al₂O₃ and ITO, TiO₂ has potential to protect organic materials. In this study, the anatese-type TiO₂ thin films were fabricated by a sol-gel method and irradiated with AO. The properties of TiO₂ were compared using mass change, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmittance spectra and photocatalytic activity before and after AO irradiation. The results indicate that TiO₂ film was hardly eroded and resistant against AO degradation. AO was shown to affects only the surface of a TiO₂ film and not the bulk. Upon AO irradiation, the TiO₂ films were slightly oxidized. However, these changes were very small. Photocatalytic activity of TiO₂ was still maintained in spite of slight decrease upon AO irradiation, which demonstrated that TiO₂ thin films are promising for elimination of contaminations outgassed from a spacecraft's materials.

Keywords: Atomic oxygen, Titanium dioxide

Preprint submitted to Acta Astronautica

Email addresses: naoki6464@eagle.sophia.ac.jp (Naoki Shimosako), shimazaki.kazunori@jaxa.jp (Kazunori Shimazaki), miyazaki.eiji@jaxa.jp (Eiji Miyazaki), h-sakama@sophia.ac.jp (Hiroshi Sakama)

Download English Version:

https://daneshyari.com/en/article/8055568

Download Persian Version:

https://daneshyari.com/article/8055568

Daneshyari.com