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a b s t r a c t

Fractional boundary layer flow of Maxwell fluid on an unsteady stretching surface was investigated.
Time–space dependent fractional derivatives are introduced into the constitutive equations of the fluid.
We developed and solved the governing equations using explicit finite difference method and the L1-
algorithm as well as shifted Grünwald–Letnikov formula. The effects of fractional parameters, relaxation
parameter, Reynolds number, and unsteadiness parameter on the velocity behavior and characteristics
of boundary layer thickness and skin friction were analyzed. Results obtained indicate that the behavior
of boundary layer of viscoelastic fluid strongly depends on time–space fractional parameters. Increases
of time fractional derivative parameter and relaxation parameter both cause a decrease of velocity while
boundary layer thickness increase, but the space fractional derivative parameter and fractional Reynolds
number have the opposite effects.

© 2015 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Much attention has been paid to the study of boundary layer
flow induced by continuously stretching sheets submerged in a
quiescent or moving fluid due to its important applications in
industries (e.g., copper wire’s drawing, annealing, and thinning,
aerodynamic extrusion of plastic sheets and fibers, paper produc-
tion, crystal growing, and glass blowing). In magnetic field and
thermal radiation field, the dissipative boundary layer flow on a
nonlinearly stretching sheet was studied by Kumbhakar et al. [1].
With convective boundary condition, the three dimensional ra-
diative flow of Maxwell fluid over an inclined stretching surface
was investigated by Ashraf et al. [2]. In a constantly applied mag-
netic field, the steady mixed convection stagnation point flow of
an incompressible Oldroyd-B fluid over the stretching sheet was
analyzed by Sajid et al. [3]. Likewise, the problems of unsteady
boundary layer were studied widely. Analyses of the unsteady
magnetohydrodynamic (MHD) boundary layer flow and heat
transfer of an incompressible rotating viscous fluid over a continu-
ously stretching sheetwere performedbyAbbas et al. [4]. A numer-
ical analysis of the structure of an unsteady boundary layer flow
and heat transfer of a dusty fluid over an exponentially stretching
sheet subjected to suction was done by Pavithra et al. [5]. The ef-
fects of a chemical reaction on an unsteady flow of a micropolar
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fluid over a stretching sheet embedded in a non-Darcian porous
medium were studied by Srinivas et al. [6].

The viscoelastic materials have the properties of both viscosity
and elasticity. Scott Blair [7] proposed a fractional viscoelastic fluid
constitutive model using the relation

τ(t) = ν
dασ(t)
dtα

, (1)

where ν is a constant, τ(t) is the stress, σ(t) stands for the strain
rate, and α is a constant ranging from 0 to 1.

Traditional researches on viscoelastic fluid were carried on
in the cases with the governing equations being linear. Caputo
and Mainardi [8,9] have shown that results obtained in their
analysis were in good agreement with experimental results
when fractional derivative is used to describe the viscoelastic
materials. El-Shahed et al. [10] obtained exact analytic solutions
of a few cases in Navier–Stokes equations with time fractional
derivative. By applying the He’s homotopy perturbation method
(HPM) and variational iteration method (VIM), Khan et al. [11]
studied the Navier–Stokes equations with fractional orders. Since
viscoelastic fluid shows properties of both elasticity and viscosity,
many fractional models have been proposed to characterize the
constitutive relationship between viscous stress and the strain
rate for viscoelastic materials. MHD flow of an incompressible
generalized Oldroyd-B fluid caused by an accelerating plate was
studied by Zheng et al. [12], and they obtained the exact solutions
for velocity and shear stress in terms of Fox H-function. A number
of the recent works can be also found in Refs. [13–19].
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However, the authors of Refs. [13–19] have ignored the
nonlinear term of convection and have dealt with special simple
cases where the governing equations are linear. Solutions were
obtainedwith thehelp of Laplace transform, Fourier Sine transform
and finite Hankel transform. To our knowledge, no report has been
made for fractional viscoelastic fluid boundary layer flow with
non-linear term of convection considered.

In this paper, the governing equations of fractional viscoelastic
fluid induced by an unsteady stretching surface are developed and
solved coupledwith theunsteadyboundaryusing the explicit finite
difference and L1-algorithm as well as shifted Grünwald–Letnikov
formula (approximations for fractional derivatives). The effects of
involved parameters on velocity field, boundary layer thickness,
and skin friction are then analyzed and discussed.

Considered an unsteady boundary layer flow of the Maxwell
fluid over an unsteady stretched sheet, which can be depicted by
the time–space dependent fractional derivatives, the shear stress
can be expressed in the following form

τ = µ̄
∂βu
∂yβ

. (2)

By ignoring the pressure gradient, the governing equations take
the following forms

∂u
∂x

+
∂v

∂y
= 0, (3)


1 + λDαt

 ∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ν̄
∂

∂y


Dβy u


, (4)

whereDαt andDβy are fractional calculus operator based on Caputo’s
definition and Riemann–Liouville’s definition respectively [20]

Dαt f (t) =
1

0(α − 1)

 t

0

f ′(τ )

(t − τ)α
dτ , 0 < α < 1, (5)

Dβy f (y) =
1

0(1 − β)

d
dy

 y

0

f (ξ)
(y − ξ)β

dξ, 0 < β < 1, (6)

where0(·) is the Gamma function, u and v stand for the horizontal
velocity and vertical velocity respectively, ν̄ = µ̄/ρ is the
fractional kinematics viscosity of the fluid (in m1+β/s), µ̄ is the
fractional viscosity coefficient (in kg/m2−β/s), ρ is the constant
density of the fluid (in kg/m3), and λ is the fractional relaxation
time (in 1/sα).

It is assumed that the fluids are static on the plate at first,
suddenly the sheet achieves a horizontal velocity Uw along the x-
axis. The shear stress results in the movement of the fluids. The
governing equations are given by Eqs. (3) and (4) and satisfy the
boundary conditions

u(0, y, t) = 0, u(x, 0, t) = Uw,

u(x, y, t) → 0 y → L, u(x, y, t) → 0 x → ∞,

v(x, 0, t) = v(0, y, t) = 0, v(x, y, t) → 0 x → ∞,

v(x, y, t) → 0 y → L,
(7)

where the unsteady stretching velocity Uw is horizontal and
depend on time and space. It is assumed to be

Uw = ax/(1 − bt). (8)

Applying the following non-dimensional quantities

x∗
=

x
L
, y∗

=
y
L
, u∗

=
u
aL
, v∗

=
v

aL
,

t∗ = at, λ∗
= aαλ

(9)

and ignoring the dimensionless mark ‘‘*’’ for brevity, we can derive
the dimensionless motion equations as

∂u
∂x

+
∂v

∂y
= 0, (10)


1 + λDαt

 ∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
1

Reβ

∂

∂y


Dβy u


. (11)

The initial and boundary conditions are

u(0, y, t) = 0, u(x, 0, t) = x/(1 − St),
u(x, y, t) → 0 y → 1, u(x, y, t) → 0 x → ∞,

v(x, 0, t) = v(0, y, t) = 0, v(x, y, t) → 0 x → ∞,

v(x, y, t) → 0 y → 1,
(12)

where S = b/a is the unsteadiness parameter, and Reβ =
aLβ+1

ν̄
is

the general fractional Reynolds number.
We first discretize space and time into grid points and time

instants, letting xi = ihx (i = 0, 1, 2, . . .), yj = jhy (j = 0, 1, 2, . . .),
and tn = kτ (k = 0, 1, 2, . . .), where hx, hy and τ are the spatial
and temporal steps respectively.

Adopting the L1-algorithm [21] into the unsteady term, we can
obtain

Dαt u(x, y, t)
tk
xi,yj

=
1

τ α0(2 − α)

×


c0uk

i,j −

k−1
l=1

(cj−k−1 − cj−k)ul
i,j − cj−1u0

i,j


+O(τ 2−α), 0 < α < 1, (13)

where the diffusion term is approximated using the shifted
Grünwald–Letnikov formula [22]

Dγy u(x, y, t)
tk
xi,yj

=
1
hγy

j+1
p=0

wpuk
i,j−p+1 + O(hy),

1 < γ < 2. (14)

Here the coefficients are defined as

ck = (k + 1)1−α − k1−α, (15)

w0 = 1, wk =


1 −

β + 1
k


wk−1, k = 1, 2, . . . . (16)

Introducing the Euler backward difference scheme into the
first-order time derivative, we have

∂u(xi, yj, tk)
∂t

=
u(xi, yj, tk)− u(xi, yj, tk−1)

τ
+ O(τ ). (17)

The explicit finite difference approximations for Eqs. (10) and
(11) are

1
hy


vk+1
i,j −


1
hy


vk+1
i,j−1 =


1
hx


uk
i−1,j −


1
hx


uk
i,j, (18)

uk+1
i,j − uk

i,j

τ
+

λ

τ α0(2 − α)

×


c0


uk
i,j − uk−1

i,j


−

k−1
l=1

(ck−l−1 − ck−l)

ul
i,j − ul−1

i,j



+ uk
i,j

uk
i,j − uk

i−1,j

hx
+ vki,j

uk
i,j − uk

i,j−1

hy

=
1

Reβh
β+1
y

j+1
p=0

wp · uk
i,j−p+1. (19)



Download English Version:

https://daneshyari.com/en/article/805559

Download Persian Version:

https://daneshyari.com/article/805559

Daneshyari.com

https://daneshyari.com/en/article/805559
https://daneshyari.com/article/805559
https://daneshyari.com

