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A B S T R A C T

A simple modelling method is proposed to study the orbit-attitude coupled dynamics of large solar power sat-
ellites based on natural coordinate formulation. The generalized coordinates are composed of Cartesian co-
ordinates of two points and Cartesian components of two unitary vectors instead of Euler angles and angular
velocities, which is the reason for its simplicity. Firstly, in order to develop natural coordinate formulation to take
gravitational force and gravity gradient torque of a rigid body into account, Taylor series expansion is adopted to
approximate the gravitational potential energy. The equations of motion are constructed through constrained
Hamilton's equations. Then, an energy- and constraint-conserving algorithm is presented to solve the differential-
algebraic equations. Finally, the proposed method is applied to simulate the orbit-attitude coupled dynamics and
control of a large solar power satellite considering gravity gradient torque and solar radiation pressure. This
method is also applicable to dynamic modelling of other rigid multibody aerospace systems.

1. Introduction

The focus of this paper is to investigate very large solar power sat-
ellites (SPSs) that collect solar energy to generate electricity in space and
then transmit it to the Earth. Due to the reducing resources and envi-
ronmental problems of fossil fuel [1], SPSs have attracted much attention
from scientists [2]. Since the first concept of SPS was proposed [3], many
concepts have been put forward, such as 1979 SPS reference system [1],
sail tower SPS [4], tethered SPS [5,39], integrated symmetrical concen-
trator (ISC) [6], and so on. The concept of ISC can avoid the use of slip
rings and long distance power delivery that appear in other concepts [7].
The concept of ISC is that, by siting the primary reflectors at the ends of a
long truss and reflecting solar radiation to the solar panel, solar power at
high intensity is collected, and then the generated electricity is trans-
mitted to the ground by transmitting antenna. Based on the concept of
ISC, Japan Aerospace Exploration Agency (JAXA) has developed several
concepts of SPS, such as 2001 JAXA reference model [8], 2002 JAXA
reference model [8] and formation flying SPS model [9].

Since an SPS is a very large space system, its dynamics and control are
of great importance. However, there are few investigations into the dy-
namics and control issues of SPSs [10]. McNally et al. [11] studied the

orbit dynamics of SPSs in geosynchronous Laplace plane (GLP) orbit and
geosynchronous equatorial orbit (GEO), and they found that SPSs located
in GLP orbit required almost no fuel to maintain its orbit and could
minimize the risk of debris, compared with SPSs in GEO. Wie and
Roithmayr [12,13] investigated the effects of perturbations on orbit and
attitude dynamics of Abacus SPS, and they designed orbit and attitude
controllers considering perturbations and system uncertainties using
electric propulsion thrusters. Wu et al. [10] proposed a time-varying
robust optimal control strategy and applied it to the attitude control of
Abacus SPS. Liu et al. [14] studied the effects of fourth order gravita-
tional force and torque on the dynamic response and control accuracy of
the sail tower SPS. Fujii et al. [15,16] investigated the vibration control
algorithm for solar panels of tethered SPS by adjusting the tension of
tethers, and they verified their method through experiments on the
ground. Ishimura and Higuchi [17] studied the coupled dynamics of
attitude motion and structural vibration of tethered SPS, and they found
that the coupling phenomenon results from low stiffness of tethers and
thermal deformation of solar panels. Senda and Goto [18] constructed a
dynamic model of tethered SPS and proposed an attitude control method
by geomagnetic force. Jin et al. [19,20] studied the trajectory planning
for SPSs with reflectors to obtain real-time Earth pointing and Sun
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pointing by rotating the truss and the reflectors cooperatively.
From the aforementioned review, the Euler angle representation was

used to investigate simple single-rigid-body problems. For complicated
rigid multibody systems, such as ISC and sail tower SPS, natural coor-
dinate formulation (NCF) is an effective method to simplify the model-
ling process [21]. NCF uses two Cartesian coordinate points and two
Cartesian unitary vectors as dependent generalized coordinates of a rigid
body so that the modelling process is very easy to understand [22].
Meanwhile, by sharing the Cartesian coordinate points by contiguous
bodies, NCF reduces the number of joint constraints [21,23]. On the basis
of NCF, zhao et al. [24] established the solar sails model and investigated
the dynamic behavior of deployment. Based on the NCF, Liu et al. [25],
constructed the dynamic model for rigid-flexible satellite system, and
they [26] investigated the dynamics and control of a satellite-based robot
with six arms. However, it is necessary to mention that, in the above
works on NCF, the effect of gravity gradient torque was neglected.
Gravity gradient torque is one of the main sources of attitude perturba-
tions for SPSs [12], hence, it is necessary to be taken into account [14].

The objective of this paper is to develop NCF to take gravitational
force as well as gravity gradient torque into consideration so that this
simple modelling method is applicable to orbit-attitude coupled model-
ling of complicated SPSs. This paper is organized as follows. The orbit-
attitude coupled modelling method for a rigid body is proposed in sec-
tion 2. In section 3, an energy- and constraint-conserving algorithm for
DAEs is presented. A simple example is carried out to validate the pro-
posed modelling method and proposed numerical method in section 4.
Section 5 presents dynamic modelling and attitude controller design for
2002 JAXA reference model of SPS. Simulation results are given and
discussed in section 6 and conclusions are drawn in the last section.

2. Orbit-attitude coupled modelling method

This section presents the derivation of NCF to take gravitational force
and gravity gradient torque of a rigid body into account, which begins
with some basic concepts of NCF. In NCF, a rigid body is described in a
global inertial coordinate system O� XYZ, as shown in Fig. 1. Pi and Pj
are two fixed points of the rigid body. e, u and v are orthogonal unit
vectors connected to the rigid body. ri and rj are the vectors of global
coordinates of Pi and Pj. l is the distance between Pi and Pj. In order to
describe the motion of a rigid body, ri, rj, u and v are selected as
generalized coordinates

q ¼
h
rTi ; r

T
j ;u

T; vT 
iT

2 R12: (1)

These generalized coordinates are dependent since there are only 6
degrees of freedom for a rigid body. They are subjected to the following
constraints [21]
8>>>>>>><
>>>>>>>:

�
rj � ri

�T�rj � ri
�� l2 ¼ 0;

uTu� 1 ¼ 0;
vTv� 1 ¼ 0;�
rj � ri

�T
u ¼ 0;�

rj � ri
�T
v ¼ 0;

uTv ¼ 0;

(2)

which describe in sequence the distance between two points, the lengths
of two vectors and the orthogonality between vectors. The above con-
straints are abbreviated as

gðqÞ ¼ 0 2 R6: (3)

The equations of motion of the rigid body are constructed by con-
strained Hamilton's equations. Generally, there are two steps: firstly to
obtain the constrained Hamiltonian function, and secondly to calculate
the derivatives of the constrained Hamiltonian function with respect to
generalized variables. The constrained Hamiltonian function of the rigid

body is written as [27]

H ¼ Tð _qÞ þ UðqÞ þ λTgðqÞ ¼ 1
2
_qTMq

⋅ þ UðqÞ þ λTgðqÞ; (4)

where Tð _qÞ is the kinetic energy, M is the mass matrix of the rigid body,
UðqÞ is the gravitational potential energy and λ 2 R6 is the vector of
Lagrange multipliers. The mass matrix is calculated by [21]

M¼
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l
I3
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IzI3

3
777777775
;

(5)

where I3 2 R3�3 is an identity matrix,m is the mass of the rigid body, and
½xG; yG; zG �T are the coordinates of centre of mass in Pi � euv coordinate
system. Ixx, Iyy , and Izz are the moments of inertia with respect to
Pi � euv, Ixy , Iyz and Ixz are the products of inertia with respect to
Pi � euv. Ix, Iy , and Iz are calculated as

2
4 Ix
Iy
Iz

3
5 ¼ 1

2

2
4�1 1 1

1 �1 1
1 1 �1

3
5
2
4 IxxIyy
Izz

3
5: (6)

The gravitational potential energy in Eq. (4) is calculated as [28]

UðqÞ ¼ �μ∫
V

ρffiffiffiffiffiffiffi
rTr

p dV ¼ �μ∫
V
ρf ðrÞdV ; (7)

where  r is the Cartesian coordinates of an arbitrary point in the rigid
body, f ðrÞ ¼ 1=

ffiffiffiffiffiffiffi
rTr

p
is a nonlinear function of r, μ ¼ 3:986� 1014 m3s�2

is the standard gravitational parameter of the Earth, ρ is the density of the
rigid body, and V is the volume of the rigid body. However, it is not easy
to obtain UðqÞ analytically. Wang and Xu employed Taylor series
expansion to approximate the gravitational potential energy of a rigid
body [28]. According to their results, both the lowest order of gravity
gradient torque and second order of gravitational potential energy are
expressed by the inertia matrix of the rigid body. Therefore, in order to
take gravity gradient torque into account, a second-order Taylor series
expansion is adopted to approximate f ðrÞ around the centre of mass r0,
and the approximated gravitational potential energy is expressed by

UðqÞ � �μ

2ðrT0r0Þ5=2
�
dxx

Ix
l2
þ dyyIy þ dzzIz þ dxy

Ixy
l
þ dxz

Ixz
l
þ dyzIyz þ dxm

xG
l

þ dymyG þ dzmzG þ d0m
�
;

(8)

where

Fig. 1. NCF description of a rigid body.
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