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a b s t r a c t

Biologicalmaterials such as bone, tooth, and nacre are load-bearing nanocomposites composed ofmineral
and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible
to buckle under the compressive load. In this paper, we analyze the local buckling behaviors of the
nanocomposite structure of the biologicalmaterials using a beam-springmodel bywhichwe can consider
plenty of mineral crystals and their interaction in our analysis compared with existing studies. We show
that there is a transition of the buckling behaviors from a local buckling mode to a global one when we
continuously increase the aspect ratio of mineral, leading to an increase of the buckling strength which
levels off to the strength of the composites reinforced with continuous crystals. We find that the contact
condition at the mineral tips has a striking effect on the local buckling mode at small aspect ratio, but the
effect diminishes when the aspect ratio is large. Our analyses also show that the staggered arrangement
of mineral plays a central role in the stability of the biological nanocomposites.

© 2015 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Materials scientists have arrived at a consensus that biological
nanocomposites, such as bone, tooth, nacre have superiormechan-
ical properties due to the exquisite design of their microstructure
fromnano tomacroscale [1–6]. It was shown that there is a conver-
gent nanocomposite structure consisting of mineral crystals and
protein where the minerals often have large aspect ratio and stag-
gered arrangement in the protein matrix [1,7–11]. A multitude of
studies showed that this nanocomposite structure plays a central
role in the mechanical properties from stiffness to strength and
fracture toughness [12–17], which provided valuable insights into
the mechanical principles of the design of biological nanocompos-
ites.

However, the mechanical behaviors of biological materials
under compressive load have not yet been understood. Because
the mineral crystals have high aspect ratio, and protein is up to
three orders of magnitude softer than mineral, the nanocomposite
structures are susceptible to buckle under compression. Therefore,
it is interesting to ask the question how the biological materials
deal with the possible buckling problem. Ji et al. [18] studied
the buckling behaviors of a single mineral in the nanocomposites
with the assumption that its neighboring minerals remain un-
buckled, i.e., the interaction between minerals are not considered,
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which leads to a higher buckling mode. Su et al. [19] studied
the buckling behaviors of two neighboring minerals in a periodic
unit by considering the coordination among the adjacent mineral
crystals. The symmetric and anti-symmetric buckling modes were
identified by using the perturbation method, and corresponding
buckling strength for each mode was derived. They showed that
the anti-symmetric mode often happens at small aspect ratio,
but the symmetric mode at high aspect ratio, and their buckling
strength both asymptotically approached to that of the continuous
fiber reinforced composites predicted by the Rosen model [20,21].

Those previous studies generally limited their analysis within a
periodic unit, and the interaction among minerals beyond the unit
is not considered. However, the buckling behaviors of composite
structure at larger scale with many minerals should be much
different. In this paper, we develop a simple beam-spring model,
with which the buckling behaviors of a system with plenty of
minerals can be analyzed, where the mineral is modeled by Euler
beam while the matrix by distributed elastic spring. We focus on
the effect of aspect ratio of minerals and the contact condition at
the mineral tips on the buckling behaviors of the biocomposites.

It is arduous to analyze the buckling behaviors of the com-
posite structure with many mineral crystals even using numeri-
cal method. An obstacle of such analysis is that massive elements
must be used to discretize the mineral and protein system in order
to get accurate buckling modes and strength using conventional
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Fig. 1. The beam-spring model of the nanocomposite structure of biological
materials. (a) Finite element method (FEM) model of the nanocomposite in which
theminerals are staggered in the proteinmatrix. Rigid body plates are used to apply
compressive loads at the left and right boundaries; (b) Free-staggered model of the
periodic unit, where there is no contact at the mineral tips; (c) Pinned-staggered
model of the periodic unit, where there is point contact at themineral tips modeled
by pinned joints.

2D or 3D elements, which, however, brings unfordable comput-
ing workload. In order to address this difficulty, here we introduce
the beam-spring model, in which the mineral is modeled by Euler
beam while the matrix is simplified by distributed elastic springs
between minerals. Fig. 1(a) depicts the model of the nanocompos-
ite structure based on the beam-spring model. The mineral is ar-
ranged in a staggered manner, while the springs are arranged in a
X-type pattern, as shown in Fig. 1(b) and 1(c). In addition, we con-
sider two kinds of contact conditions between mineral tips along
the longitudinal direction of mineral—one is no contact between
the tips under the compressive load (Fig. 1(b)), while the other
is point contact between the tips (Fig. 1(c)) modeled by a pinned
joint. There are up to 3640 minerals in the whole system. A home-
made FORTRAN program is used to create nodes and elements and
a MATLAB program to build the connection of springs with miner-
als and assemble the whole system, and then create the input file
for ABAQUS program. In order to apply uniform compressive load,
a rigid plate is placed at each loading boundary at the left and right,
while the top and bottom ones are maintained as straight lines by
using the ‘‘coupled degrees of freedom’’ method (Fig. 1(a)).

The effective Young’s modulus EP and shear modulus GP of
protein as function of spring constant K can be derived as (see the
Supporting Materials (Appendix A) for detailed derivations),
EP = KρxH,

GP = KρxH cos2 θ0 = EP cos2 θ0,
(1)

where ρx is the number density of springs along the beam length.
Considering Poisson’s ratio of protein is almost equal to 0.5, we
get θ0 = 54.7o (the angle between right slanting spring and the
positive direction of x axis), and H = hP is the thickness of protein
layer.

The effective Young’s modulus of the nanocomposite structure
is then derived using the tension-shear chain model as [8,10]

1
E

=
4 (1 − Φ)

KρxH cos2 θ0Φ2ρ2
+

1
ΦEM

(2)

where ρ =
L
hM

, EM, Φ are the aspect ratio, Young’s modulus, and
volume fraction of mineral, respectively, in which L and hM are the
length and thickness of mineral crystals, respectively. We verified
that the predictions of Eq. (2) agreewell with our FEM calculations,
which suggests that our beam-spring model can well describe the
mechanics of the nanocomposite structure.

We first analyzed the buckling behaviors of the nanocomposite
structure for the non-contact condition at the mineral tips (free-
staggered model) at different aspect ratios of mineral. We found
that the buckling mode was largely dependent on the aspect ratio,
as shown in Fig. 2. When the aspect ratio was small (i.e., ρ = 5),
themineral crystalswere prone to have rigid body rotationwithout
bending, while the protein had both shear and tensile/compressive
deformation. Note that the nanocomposite exhibited a typical
local buckling mode with a periodic pattern along both horizontal
and vertical direction; when the aspect ratio was increased to
ρ = 10, the mineral crystals then had both rigid body rotation
and bending deformation, and protein undertook both shear and
tensile deformation; if the aspect ratio was further increased to
ρ = 30, mineral crystal had more bending but less rigid body
rotation, and protein undertook more shear deformation with
slight lateral stretching at the end of minerals; finally, minerals
undertook pure bending and protein had pure shearing when the
aspect ratio was increased to as high as ρ = 50, at which the
buckling mode approached to that of Rosen’s model, a global shear
buckling mode [20].

In the Rosen buckling mode, the continuous fibers undertake
pure bending deformation, while soft matrix has pure shear
deformation. The buckling strength of this buckling mode is given
by Rosen’s model as [19]

σc = EP


1

2 (1 + υP) (1 − Φ)
+

π2Φκ

3ρ2


, (3)

where υP is Poisson’s ratio of protein, and κ =
EM
EP

. The critical
buckling strength predicted by the beam-spring model based FEM
simulations is close to that of Eq. (3), which again validates the
beam-spring model.

We then analyzed the buckling behaviors of the nanocompos-
ites with point contact condition (pinned-staggered model) at dif-
ferent aspect ratios, as illustrated in Fig. 3. We see that at the small
aspect ratio (ρ = 5), the buckling deformation severely localized at
the loading boundaries anddegraded towards the center of thema-
terials, which is different from the behaviors of the free-staggered
model. Themineral crystals near the loading boundary were prone
to have rigid body rotation without bending, while the minerals
away from the boundary hardly deformed; when the aspect ratio
was increased to ρ = 10, the material started to exhibit a feature
of global buckling, and the mineral crystals undertook both rigid
body rotation and bending deformation, while protein had both
shear and tensile deformation; when the aspect ratio was further
increased to ρ = 30 and up, the buckling mode exhibited a pure
shearing mode, approaching to that of Rosen’s model.

Our results showed that the aspect ratio of minerals plays
a paramount role in the buckling behaviors of nanocomposite
structure where the mineral are laid in a staggered manner in
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