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A B S T R A C T

Gaussian approximation filters have increasingly been developed to enhance the accuracy of attitude estimation
in space missions. The effective employment of these algorithms demands accurate knowledge of system dy-
namics and measurement models, as well as their noise characteristics, which are usually unavailable or unre-
liable. An innovation-based adaptive filtering approach has been adopted as a solution to this problem; however,
it exhibits two major challenges, namely appropriate window size selection and guaranteed assurance of positive
definiteness for the estimated noise covariance matrices. The current work presents two novel techniques based
on relative entropy and confidence level concepts in order to address the abovementioned drawbacks. The pro-
posed adaptation techniques are applied to two nonlinear state estimation algorithms of the extended Kalman
filter and cubature Kalman filter for attitude estimation of a low earth orbit satellite equipped with three-axis
magnetometers and Sun sensors. The effectiveness of the proposed adaptation scheme is demonstrated by
means of comprehensive sensitivity analysis on the system and environmental parameters by using extensive
independent Monte Carlo simulations.

1. Introduction

Nonlinear state estimation methods within the Bayesian framework
have increasingly been utilized in space navigation in order to
enhance mission performance. The attitude determination (AD) sub-
system plays a crucial role in most space navigation systems for
achieving the desired goals. Although a considerable amount of AD-
related research using the Kalman filter (KF) family exists, its imple-
mentation for satisfactory estimation results requires accurate prior
knowledge of the measurement and process noise characteristics.
Unfortunately, various system and environmental uncertainties cause
the noise statistical properties to change over time; hence, in general,
no exact prior information regarding noise parameters is available.
The lack of sufficient a priori statistical noise characteristics results in
filter performance degradation, while incorrect a priori information is
a key cause of KF algorithm divergence. This divergence may also
originate from other sources, such as irrelevant transition information
and/or incorrect mathematical models and constraints. However, the
primary focus of this study is to resolve the former problem. Although
numerous diverse research schemes have been proposed to address
this difficulty, all existing methods can be classified into four major
categories, as follows.

1 H∞ filtering: The H∞ filter, also known as the minimax filter, makes
no assumptions about noise statistics and attempts to minimize the
worst-case estimation error. This estimation algorithm is a robust
version of the KF method; however, it is over-conservative and offers
lower estimation accuracy than the KF [1,2].

2 Adaptive Gaussian approximation filters: the adaptive-filtering strat-
egy aims to tune the filter parameters, including noise statistics, based
on variable working conditions. Therefore, lack of a priori noise
statistical properties is compensated for, and the dependency of filter
performance on noise parameters is reduced. These algorithms
change the measurement and/or process noise characteristics by
means of statistical investigation of the measurement residual or
innovation. For this reason, such techniques are usually known as
innovation-based adaptive estimation (IAE) methods. Kailath [3] was
the first to propose the innovation sequence utility for KF tuning in
1968. IAE techniques differ in terms of the process frame and can be
classified into several groups: covariance matching methods [4,5],
maximum likelihood (ML) criterion [6], maximum a posteriori (MAP)
criterion [7,8], autocorrelation of innovation, residual whitening,
consistency tests [1,4], and master-slave structures [9,10]. The
covariance matching approach has been considered as the funda-
mental concept underlying the majority of IAE methods.
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3 Multiple model adaptive estimation (MMAE): this method runs a
bank of parallel KFs that differ in the utilized model. The MMAE
method has been demonstrated as potentially viable for estimating
every unknown parameter, such as noise covariance or dynamic/
measurement system parameters. Despite its considerable computa-
tional effort and long execution time, this approach yields desirable
estimation accuracy if the number of utilized models adequately
covers the entire unknown parameter workspace; otherwise, it would
fail and/or be relatively inefficient [11,12].

4 Artificial intelligence-based methods: these algorithms tune the noise
strength based on heuristic methods originating from human expe-
rience, such as fuzzy logic [13], or inspired by natural phenomena,
such as particle swarm optimization (PSO) [14], the ant colony (AC)
algorithm [15], the genetic algorithm (GA) [16], and the tabu
continuous AC system (TCACS) [17].

Although the IAE strategy offers simpler computation, a shorter run
time, and a faster convergence rate, it suffers from two significant diffi-
culties that limit its application in reality. Firstly, it cannot guarantee
positive definiteness of the calculated noise covariance matrices during
the numerical computer-based propagation process. Furthermore, noise
estimation depends on the assumed window size for the undertaken
innovation sequence. The window size has usually been adjusted in
advance via ad-hoc strategies in the literature [18–20]. When consid-
ering time-dependent variations of noise properties and the dynamic
system environment, online adjustment of window size is still important.
It is for the latter part that this work proposes certain new ideas based on
Cholesky decomposition, relative entropy, namely Kullback-Leibler dis-
tance (KLD), and the confidence level concept, in order to adapt the
window size over time. The key contribution of this work is the creation
of an appropriate working context for real implementation of the IAE
method. Considering the nonlinear nature of the attitude estimation
problem, the proposed adaptation scheme is implemented using two
nonlinear filters, namely the extended Kalman filter (EKF) and cubature
Kalman filter (CKF).

The remaining sections of this paper are arranged as follows. Satellite
rotational motion, including attitude kinematics and dynamics, is
modeled in section 2, and the measurement system is introduced in
section 3. Section 4 is devoted to the development of adaptive entropy-
based nonlinear filtering methods. Section 5 provides numerical simu-
lations and a comprehensive sensitivity analysis of the various dynamic
system parameters, adaptive estimation algorithm, and surrounding
environment. Conclusions and future recommendations are provided in
section 6.

2. Satellite rotational motion

The rotational motion of a satellite is described using attitude kine-
matics and dynamics. Various means exist for describing spacecraft
attitude, including Euler angles, quaternion parameters, the Gibbs vector,
and the direction cosine matrix [21]. Quaternion parameters are themost
extensively used and preferred means of attitude representation because
of their linear propagation equations and non-singular characteristics for
any arbitrary rotation angle. As only three independent parameters are
required for attitude representation, the unit norm constraint seems as a
disadvantage, since any extra constraint imposes additional computa-
tional effort and complexity. The attitude represented by the quaternion
parameters q ¼ ½ q1 q2 q3 q4 �T can propagate in time, as follows
[22]:

d
dt
q ¼ 1

2

2664
Kε ωz �ωy ωx

�ωz Kε ωx ωy

ωy �ωx Kε ωz

�ωx �ωy �ωz Kε

3775q; (1)

where ε ¼ 1� qTq and q4is considered as the scalar part of q. The di-

agonal matrix elements are specifically selected as presented in Eq. (1) in
order to guarantee the unit norm condition of quaternions, even in the
presence of rounding errors. Moreover,K is an arbitrary constant selected

so that KΔt � 1, where Δt is the integration time step, while ωBI ¼�
ωx ωy ωz

�T represents the angular velocity vector of the spacecraft
body (B) with respect to the reference inertial frame (I), expressed in the
body frame (B).

The nonlinear attitude dynamics of a rigid satellite can be described
by Euler's law. Expressing Euler's law in the satellite body coordinate
system results in Ref. [23]:

½ _ωBI �B ¼ IB�1
B

�½τ�B � ½ωBI �B � IBB ½ωBI �B
�
; (2)

where ½:�B denotes the quantity expressed in the body coordinate system,
IBB is the spacecraft moment of inertia (MOI) matrix about its center of
mass, expressed in the body frame, and τ is the total torque exerted on the
spacecraft, including the control and disturbance. Disturbances applied
to an earth satellite originate from various internal and/or external
sources, such as aerodynamic drag, solar radiation pressure, gravity
gradient, electromagnetic torque, and fuel sloshing, while the severity of
most disturbing forces/moments depends on the space vehicle altitude.
As the aerodynamic drag, gravity gradient, and residual magnetic
moment are the most effective disturbance torque sources for a small
satellite in LEO [23], these factors are considered in the present study.

3. Measurement system

The measurement system is usually selected according to mission
accuracy, AD requirements, and project budget. In order to achieve a low-
cost but precise navigation system, a centralized fusion of the micro-
electro-mechanical system (MEMS)-based three-axis magnetometer
(TAM) and the Sun sensor are selected to meet the performance and
budget requirements simultaneously.

The low cost, light weight, and low power requirements offered by
TAMs have made them useful sensors in most LEO missions [24]. TAMs
measure the geomagnetic field in the satellite body coordinate system;
therefore, the TAM output can be modeled as:

½Bmeas�B ¼ TBI ½Bmodel�I þ vB; (3)

where Bmeasand Bmodelrepresent the measured geomagnetic field vector
and its corresponding theoretical counterpart obtained from existing
models, respectively. Furthermore, Bmodel is a function of the satellite
position, and is extracted from the international geomagnetic reference
field (IGRF) [25] in the current work; vBrepresents the corresponding
measurement noise, assumed as zero-mean Gaussian with a variance of
σ2B along each axis; and TBI represents the transformation matrix of the
inertial frame to the body frame, defined in terms of the quaternion pa-
rameters, as follows [22]:

TBI ¼
24 q21 � q22 � q23 þ q24 2ðq1q2 þ q3q4Þ 2ðq1q3 � q2q4Þ
2ðq1q2 � q3q4Þ � q21 þ q22 � q23 þ q24 2ðq2q3 þ q1q4Þ
2ðq1q3 þ q2q4Þ 2ðq2q3 � q1q4Þ � q21 � q22 þ q23 þ q24

35; (4)

The Sun sensor is the other utilized reference sensor that provides
sunlight direction with respect to the sensor frame assumed to be coin-
cident to the satellite body frame. The sensor output in the satellite body
coordinate system is modeled as follows:

½smeas�B ¼ TBI
�
sref

�I þ vs: (5)

where smeas and sref are the measured and modeled Sun direction vectors,
respectively, and sref can easily be obtained as the difference between the
Sun and satellite position vectors; and vs is the Sun sensor measurement
noise, modeled as zero-mean Gaussian white noise with a variance of σ2s
along each axis. Moreover, no noise correlation is assumed between the
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