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Abstract The far-field noise radiated from mixing layers is determined by the near-field flow dynamics
which is sensitive to the initial perturbation of instability introduced physically or numerically. This
study focuses on the effects of the phase delay in two initial perturbations, one at the fundamental
wave number and the other at its subharmonic both calculated from linear instability analysis, on
the sound generation in mixing layers. When different phase delays φ1 changing from zero to 2π is
applied on the fundamental mode, we observe different vortex merging processes (e.g. vortex pairing
or tearing). The strong nonlinear interaction in the merging process generates most of the noise
from mixing layers. There shows a pattern in a period of 2π for the response of far-field sound to
the change of φ1. Similar effects on the dynamics and acoustics can be achieved by adding different
phase delays φ2 to the subharmonic mode instead, however, the response repeats in a period of only
π for φ2. The effects of the combination of different phase delays to other parameters, including the
amplitude and wave number for each perturbations, are also investigated. All the results indicate
a critical role of nonlinearity in the sound generation mechanism of mixing layers. c© 2012 The
Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1203203]
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It has been a long journey for the study of noise gen-
eration from free shear layers since Lighthill’s pioneer
work.1 There were many works on this topic through
different approaches experimentally,2 numerically,3 and
theoretically4 in the past half century. It is commonly
agreed that in subsonic free shear layers there are two
types of sound sources,5 namely large-scale coherent
structures and turbulent fine structures, and the former
one normally plays the dominant role. The development
of large coherent structures (e.g. vortex roll-up, pairing,
and tearing) can often be explained by the evolution of
instability waves in the flow.6,7 For supersonic flows,
the sound radiation mechanism is related to the lin-
ear instability waves, which mostly travel at supersonic
phase speed and therefore are radiation capable.8 On
the other hand, the noise radiation mechanism for sub-
sonic flows is less obvious for the globally subsonic phase
speed of their linear instability waves. So that, nonlin-
earity and the interaction between instability waves are
critical in the noise radiation of subsonic shear flows.9 A
simple mixing layer, developing temporally or spatially,
has three developing stages which can all be explained
by the behaviors of instability waves: the first is the
initial vortex roll-up which is the growth of the most
unstable instability wave; the second is the vortex in-
teraction such as pairing, tearing, and merging, which is
from the competition and nonlinear interaction of insta-
bility waves at different frequencies and with different
phase delays; last, when all instability waves go stable
at larger shear-layer thickness, the near-field dynamics
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is dominantly viscous damping. Among these stages,
most noise is generated in the second stage with strong
nonlinear interaction. There is also clear indication of
the sensitivity of the nonlinear interaction to the initial
perturbations implemented to introduce instability.10

Therefore, the current study focuses on the understand-
ing of the correlation between the phase delay in initial
perturbations and sound generation in mixing layers.
In this work, we choose a temporally-developing mixing
layer for its simplicity and the capability of resembling a
spatially-developing mixing layer in key dynamics11,12

and aeroacoustics.13 The periodic boundary condition
for temporal-developing flows also brings in computa-
tional convenience and clarity in the implementation of
the initial perturbations for instability.

The basic computational setup is shown schemati-
cally in Fig. 1, where the Mach number of lower and
upper flows are M1 = 0.25 and M2 = 0.50, respectively,
and the Reynolds number based on far-field sound speed
and initial vorticity thickness is Re = ρ∞a∞δω/μ =
1000. The initial flow profile is a boundary layer solu-
tion superposed by small perturbation with two normal
modes,

q′(φ1, φ2;x, y) = C

2∑
k=1

R
{
Ak q̂k(y)e

i (αkx+φk)
}
,

(1)

where R denotes the real part, C is an arbitrary small
number to limit the overall perturbation strength, Ak

defines the amplitude of individual instability waves,
q̂k(y) is the eigen-modes computed by linear instability
theory, αk is the wave number, and φk is the phase delay
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Fig. 1. The schematic for the computational configuration of
the current temporally-developing mixing layer: gray areas
at the top and bottom mark for computational sponge zones.

of each modes. In the current study, we only choose two
wave numbers: the fundamental mode α1 and its sub-
harmonic α2(= α1/2), which present the nonlinear in-
teraction as resonance.9 The instability modes q̂k(y) are
calculated from linear instability analysis using spectral
collocation method and shown in Fig. 2. The ampli-
tudes of the modes are normalized,14 and the initial
phases are adjusted to make the imaginary part of v̂
equal to 0 at y = 0. So that, the current study of phase
delay is independent of the phase difference caused by
different computational approaches in solving instabil-
ity modes.

The computational domain is [0, 2π/α2] along
x direction with periodic boundary condition and
[−200, 200] along y direction with sponge zones at both
ends [−200,−150] and [150, 200], where the lengths are
non-dimensionalized by initial vorticity thickness δω.
Spectral method is used to solve the derivatives along x,
a fourth-order dispersion-relation-preserving scheme15

is used to solve the derivatives along y for easy code par-
allelization, and a fourth-order Runge-Kutta scheme is
used for time advancement. All the algorithm and code
have been used and extensively validated in our previ-
ous works.11,16–18

To study the effects of initial phase delays, we pick
six cases shown as caseK1a to caseK5 in Table 1, where
K1a and K1b are considered the base cases focusing on
the variations (as sub-cases) of φ1 and φ2 respectively
from 0 to 2π, and K2 to K5 have the same range of
in phase delays as in K1b (on φ2) but with difference
in initial amplitudes and wave numbers to study the
combined effects from these additional parameters. It
is noted that the overall energy is kept low by using
small amplitudes in all cases (except for K2) to ensure
the appearance of the nonlinear mechanism.9

For all the cases, the disturbance energy of individ-
ual instability waves is amplified linearly at first, then
there is the strong nonlinear interaction between the

Fig. 2. The results of linear instability analysis.

Table 1. Parameters for different numerical cases to study
the effects of phase delays and other characteristics of initial
perturbations in form of instability modes.

Case C A1 A2 α1 α2 φ1 φ2

K1a 0.001 1.0 1.00 0.81 0.405 0 ∼ 2π 0.0
K1b 0.001 1.0 1.00 0.81 0.405 0.0 0 ∼ 2π
K2 0.001 1.0 10.0 0.81 0.405 0.0 0 ∼ 2π
K3 0.001 1.0 0.10 0.81 0.405 0.0 0 ∼ 2π
K4 0.001 1.0 1.0 0.63 0.315 0.0 0 ∼ 2π
K5 0.001 1.0 1.0 1.00 0.500 0.0 0 ∼ 2π

fundamental mode and the subharmonic mode. Such
strong interaction in near-field dynamics produces the
majority of noise at the far field. Here, to indicate the
energy level of far-field sound, we use density perturba-
tion 〈ρ′〉 spatially-averaged along a line at Y = −100
and parallel to the streamwise,19 though the averaged
sound intensity should serve the same purpose well.

Figure 3(a) shows the evolution of 〈ρ′〉 in case K1a

at Y = −100 versus the delayed time td = t− |Y |/a∞.
Two critical moments A and B are marked in Fig. 3(a):
A is the moment for the disturbance energy of α1 to
reach the maximum growth rate, and B is for the dis-
turbance energy of subharmonic α2 = α1/2 to reach the
maximum growth rate. Both are in the sense of the de-
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