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A B S T R A C T

Reorientation of an object's (spacecraft) problem is formulated in details in the and groups
matrix terms using the most optional math tool of exceptional algebra of quaternion numbers. A thorough
analysis of the two approaches is made resulting in original formulas linking parameters of the assigned object's
consequent 3D rotations with a single rotation about a unit vector pointing the instant rotation axis, respective
operational technology described with relevant examples. It is also demonstrated that an axial quaternion frame
admits fractalization so that the reorientation problem is reduced to deformations of the sub-geometric fractal
surface.

1. Introduction

There are few math-tech methods to ensure orientation of an object
moving or immobile in space. Two evident branches of the assigned
orientation problem may be distinguished, they are: (i) a series of
subsequent several-angles rotation, (ii) a one-angle rotation about an
instant axis. Mixed variants may exist, but implying more cumbersome
calculations, hence apparently less productive, they are not considered
here. Usually the orientation tasks are relevant with computations over
three-dimensional (3D) flat space modeling a local domain of the
physical space; but since the math methods noticeably differ, various
matrix algebra elements are engaged.

If magnitudes involved in calculations are regarded as real number
objects, then the both techniques (i) and (ii) should be preferably based
on the vector rotation group . Then in the case (i) the solution
is reduced to a set of simple (plane) rotations by Euler (or Krylov, or
others) angles about selected axes, in the case (ii) a non-trivial problem
of searching for the instant axis of a single rotation is to be solved.

It is widely known though that quaternion (Q-) numbers perfectly
fit for the spacecraft orientation tasks (see e.g. [1,2]) due to the fact that
three Q-vector units represent math models of three mutually ortho-
gonal gyroscope axes (Q-frame). This simplifies calculations, especially
for the case (ii) since not only the vector , but also the spinor

reflection group can be used rotation group, though a clear
interconnection between parameters of respective matrix representa-
tions and the relevant operational technique are hardly found in
literature. This study aims to fill the gap with the help of the simplest
math means. By the way we encounter an unexpected possibility to
split any axial vector, and a Q-frame as a whole into 2D vector-covector

constituents of fractal dimension ½ (provided any of 3D dimensions is
taken for 1). The fractalization technique [3], mathematically non-
trivial and much less known (so formerly ignored) endows all algebraic
objects and actions with distinct geometric sense. Detailed description
of this technique applied to the reorientation problem is another
purpose of this study. In Section 2 parameters of an object's orientation
in 3D space are described, and a review of the math procedure within
technique (i) is given. In Section 3 the Q-algebra is shortly represented
with analysis of form-invariance of its multiplication law. Section 4 is
devoted to solution of the spacecraft reorientation problem within
approach of a Q-frame single rotation. In Section 5 a 2D fractal space
“underlying” the 3D space is introduced, and a simplified reorientation
procedure is described having its “joy-stick” analog in the fractal space.
In Section 6 a compact discussion of the method practical implementa-
tion and relevant perspectives concludes the study.

2. Orientation parameters of a space object and description
of its 3D rotations

If a coordinate system adjusted to some mechanical situation is
given, then orientation of a spacecraft (a rigid body) in the space is
defined by three angles between the coordinate axes and unit vectors of
a movable frame “frozen in” the object (usually matched with its
symmetry). An Earth observer would use the globe-based spherical
coordinates normally implying two (right-handed) Cartesian directions
in the horizontal plane, those to the North along a meridian and
along a parallel ; the orthogonal third one is zenith direction . The
set (small Latin indices run through ) is taken for constants.
Then the orientation of a spacecraft bearing a frame , (with along
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it, a transverse one, along gravity) is determined by three angles:
“yaw” , the angle between and (rotation about ); “roll” , angle -

(rot. about ); “pitch” , angle - (rot. about ). Within these
notations the object's orientation in the space is described by the
matrix equation

where (we’ll also use simpler notation ) is a -matrix belong-
ing to the special orthogonal group , so its properties are

repeated indices imply summation, i.e.
, is the Kronecker symbol (here it is 3D unit matrix).

Outlined in Section 1 technique (i) demands that the matrix be
represented as a product of simple rotations [irreducible representa-
tions of ], each performed about a frame's unit vector; a special
notation for such matrix is , lower index is a number of the rotation
axis (the frame's unit vector), upper index is the rotation angle. A
simple rotation e.g. changing the “yaw” is given by the matrix

Direct reorientation problem, i.e. reaching object's assigned orien-
tation, can be solved by a sequence of simple rotations mathematically
described by a sequent multiplication of matrices (3). This problem has
no unique solution since the group is not commutative, i.e.
different multiplication order of the matrices (3) with the same
parameters (angles) generally gives different result, e.g. products

and are normally different . Vice
versa, different orders of the matrix product with other parameters may
yield the same result, e.g. products and
may be equal . Thus the reorientation problem in the technique
(i) is ambiguous. Moreover, this introduces non-uniqueness in the
solution of the inverse problem, search of angles providing actual
object's orientation. Indeed, decomposition of an arbitrary
matrix into irreducible representations can be made in different ways;
for example one can check up that the following representation of the
orthogonal -matrix evidently belonging to the group
(each arbitrary element equals its adjoint) as a product of three
simple rotation is not unique

So the question of the optimal choice of the set of simple rotation
angles arises in solution of the inverse problem.

Moreover, transit to technique (ii) in terms of -matrices is
known in theory of matrices (see e.g. [4]) an uneasy algebraic task,
comprising search of the operator's eigenvector with unit eigenva-
lue (vector directing the axis of single rotation),
followed by vague procedure of finding value of the rotation angle.
Fortunately all these difficulties are successfully and transparently
coped with the help of quaternion algebra tools successfully used for
solving navigation and orientation problems from the 60-s of XX
century.

3. Quaternion SO(3,R) approach to the reorientation
problem

Quaternion (Q-) number is a math object of the form1

; the component is called the scalar part (the scalar
unit 1 is normally omitted), is the vector part ( are three

imaginary vector units). The properties of the Q-number are deter-
mined by the multiplication law for its units

where is completely antisymmetric 3D discriminant tensor
(Levi-Chivita symbol).

Comparison, addition, and subtraction properties of Q-numbers are
similar to those of complex numbers. But Eq. (6) state that the
quaternion multiplication is not commutative (though it is still
associative). A Q-number can be conjugated, it has the norm and
modulus

Eq. (7) lead to definition of the inverse Q-number, hence, to right
and left quaternion division

The norm of a product of two Q-numbers and
equals to product of norms of the multiplies

In the developed form Eq. (9) demonstrates the identity of four
squares: a product of two sums of four squares is again a sum of four
squares

The “squares identities” are distinctive feature of only four exclusive
algebras of real, complex, quaternion, and octonion numbers (the last
one based on 8 units is non-associative).

Q-vector units have geometric sense important for applications:
they behave as vectors forming a Cartesian frame in 3D space. Indeed,
the simplest -matrix representation of the units2

explicitly demonstrates the “vector product” property appropriate to
axial vectors

directing a Cartesian coordinate axes. It is one of the most important
property of Q-algebra is that its multiplication law Eq. (6) keeps its
form if the Q-units are transformed

exactly as the polar basic vectors in Eq. (1); this means that a Q-
frame subject to a rotation of the type (13) is a new triad of
orthonormal Q-vectors. Thus, all formulas and conclusions
together with the problems mentioned in Section 2 are valid for frames
described by quaternions. However, happily the Q-math provides a
different (and simpler) solution of the orientation problem due to the
“enigmatic” procedure of “two-side multiplication” of a quaternion.
Indeed, one can demonstrate (e.g. [2]) that the combination of
quaternions and conically rotates vector part of about
the unit Q-vector at the angle . Detailed analysis of this
type of description of rotations is in the next section.

1 Quaternion units originally denoted (by Hamilton) as here are given in
compact vector format . 2 We use here -matrix representation of quaternions without loss of generality.
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