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a b s t r a c t

In this paper, a theoretical and numerical study of the quasi-static motion of a large
droplet pushed out of a pipe in microgravity environment was presented. For the exis-
tence of surface force, an external force is needed to push the droplet out of the pipe.
Methods to calculate the external force, the surface force, and the pressure drops were
established in theoretical model and numerical simulation, respectively. The changes of
the free energy, the surface force, as well as the pressure drops during a droplet being
pushed out of a pipe were discussed in this work. The surface force reaches its maximal
value, when the radii of upside contact line equals to the radius of the pipe. At last, a
comparison of the two methods was made based on the results.

& 2016 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The effects of surface force and capillary action play a
dominant role in space fluid management, and its
mechanism is used in many fields in the aerospace engi-
neering, for example, the thermal control components on
spacecraft [1,2], liquid droplets radiator for the high-
power space systems [3,4], free-drop techniques for the
engine ignition on satellites [5], as well as the evaporation
and combustion of droplets in the rocket engine [6].
However, in these systems, surface force may have nega-
tive effects. For instance, droplets being absorbed into the
vent pipe of the tank, which could result in the dis-
continuity of the fuel transfer. And it is difficult to push the
droplets out of the pipe. As the result, it is crucial to have a
good understanding of the process of a droplet being
pushed out from a pipe in microgravity.

In space, capillary forces and surface tension turn out to
be the major mechanism driving the droplets through a

channel or a pipe in the absence of gravity. It makes the
movement of the droplets in pipes in space, similar to the
movement of the droplets in capillaries on the ground, for
little difference in the value of Bond number [7]. By now, a
large number of studies on the performance of liquids in a
capillary on the ground have been carried out. Lucas and
Washburn, who made the first rigorous analysis of the
dynamics of capillary flow, neglected inertia in their ana-
lysis [8,9]. The dynamics of capillary flow also depends on
many other factors such as inertia, dynamic contact angle,
fluid rheology, and even shape variation of the channel,
which are addressed in many literatures [10–13]. In these
studies, the droplet shape techniques, based on the shape
of a droplet for surface force measurement were devel-
oped [14,15]. Some results or methods of these studies are
helpful to the space droplets movement research.

In this paper, a theoretical and numerical study of a
hydrophilic droplet pushed out of an axisymmetric and
smooth pipe was presented. The analysis in this work was
restricted to quasi-steady movement, which means the
velocity of the droplet in the pipe is nearly zero and the
droplet remains equilibrium for all positions. Conse-
quently, all dynamic aspects are neglected, the model here,
involves only the free energy of the internal interfaces of
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the system and external pressures [16,20]. Thus, only
geometry related effects were considered. With these
assumptions and simplifications, the minimum forces or
pressures needed to push a droplet through the system
can be calculated accurately.

2. Description of the physical model

As shown in Fig. 1, the system considered here, is a
large droplet with a fixed volume V in a hydrophilic pipe
of length L. The pipe is filled with a gas, and the large
droplet is clogged in the pipe. By large we mean that the
volume V of the droplet is larger than 4

3πr
3
0. The large

droplet divides the gas into two disconnected parts. The
pipe is smooth and axisymmetric about the y axis with a
radius r0, thickness of the wall of the pipe is neglected. The
droplet itself consists of a bulk part in direct contact with
the walls of the pipe and of two menisci, in contact with
the gas, capping the ends of the droplet. The upside
menisci is contacted with the gas outside of the pipe. In
the space environment, the gravity can be neglected,
which ensures that the menisci can be approximated by
spherical caps [14].

A coordinate is chosen and y is the coordinate of the
lowest point in the underside menisci, changing with the
movement of the droplet. The quasi-static equilibrium
assumption makes it relatively simple to combine mass
conservation with geometric constraints to determine, as a
function of the droplet position, the pressure drops over
the two menisci needed to maintain this equilibrium.

2.1. The external force

Base on the quasi-steady assumption, the Newtonian
equation of motion can be written as:

Fex�Fst ¼ 0 ð1Þ
where, Fex is the external force to push the droplet out, Fst
is the sum of the surface force caused by geometry change
of the droplet.

Here, the surface force is the resistance to balance the
external force. Such resistance can be calculated by using
the surface free energy method. Generally, the surface
force is regarded as the sum of the surface tension acting
on per unit length of the interfacial contact line, which
equal to the surface free energy based on per unit inter-
facial area. As shown in Fig. 1, the total surface Gibbs free
energy of the system is expressed as

Gtot ¼
X
i

σiAi ¼ σlgAlgþσsgAsgþσslAsl ð2Þ

Where σlg, σsg , σsl are the surface free energy of the liquid–
gas interface, the solid–gas interface, the solid–liquid
interface, respectively. Alg, Asg , Asl are the surface areas of
the liquid–gas interface, the solid–gas interface, the solid–
liquid interface, respectively. The sum of the surface force
Fst is given by the gradient of the total internal energy with
respect to the coordinate of the droplet y. Hence

Fst ¼ dGtot

dy
ð3Þ

which depends on the droplet position y and, through the
areas Ai. Thus the external force Fex can be calculated from
Eq. (1).

2.2. The pressure drop

To maintain a curved interface between the gas pres-
sure and the liquid pressure, the pressure drop must obey
the Young–Laplace equation [17]:

ΔP ¼ σ
1
R1

þ 1
R2

� �
¼ 2σ

cos θ
r

ð4Þ

where R1 and R2 is the main radii of curvature of the
curved interface between the gas and the liquid. In this
paper, the interface is axisymmetric about the y axis,
R1 ¼ R2. θ is the contact angle.

From Fig. 1, to maintain the droplet being in quasi-
static equilibrium, the pressure drop between the lower
menisci must be:

ΔP1 ¼ P1�P2 ¼ 2σ
cos θ1

r1
ð5Þ

And the pressure difference between the upper inter-
face can be obtained:

ΔP2 ¼ P3�P2 ¼ 2σ
cos θ2

r2
ð6Þ

The total pressure drop ΔP over the droplet system is:

ΔP ¼ P1�P3 ¼ΔP1�ΔP2 ¼ 2σ
cos θ1

r1
� cos θ2

r2

� �
ð7Þ
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Fig. 1. Sketch of a droplet in a pipe.
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