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a b s t r a c t

This work introduces a real time suboptimal control algorithm for six-degree-of-freedom
spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE)
approach and real-time linearization of the equations of motion. The control strategy is
sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at
each sample time. The cost function of the proposed controller has been compared with
the one obtained via a general purpose optimal control software, showing, on average, an
increase in control effort of approximately 15%, compensated by real-time implement-
ability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six-
degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation,
and control algorithms for nano-satellites in a one-g laboratory environment. The tests
show the real-time feasibility of the proposed approach.
& 2016 IAA. Published by Elsevier Ltd. on behalf of IAA. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

As spacecraft technology has evolved, robust and effi-
cient automated control has become an essential mission
capability. Over the last fifty years, in fact, worldwide
aerospace research environments have addressed their
work to the optimization of guidance, navigation and
control performances, also paying attention to the pro-
pellant consumption and time-to-launch costs.

It is clear, then, how high efficiency controls, ensuring
both position accuracy and propellant optimization, have
become a critical issue in the control systems scope and
specifically in the aerospace sector.

The spacecraft six degrees of freedom optimal control
problem has been widely analyzed in the literature, lately
focusing on spacecraft relative motion, usually requiring
numerical methods [1]. Spacecraft formation and the opti-
mization of relative maneuvers are becoming increasingly
important topics of investigation. This is due to the benefits
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Abbreviation: ADAMUS, Advanced Autonomous Multiple Spacecraft;
APF, artificial potential function; AS, attitude stage; BP, balancing plat-
form; CPU, central processing unit; DARPA, Defense Advanced Research
Projects Agency; DCM, direction cosine matrix; EKF, extended Kalman
filter; GDC, guidance dynamics corporation; IBPS, intelligent battery and
power system; IPOPT, interior point optimizer; KKT, Karush–Kuhn–
Tucker; LGR, Legendre Gauss Radau; LKF, linear Kalman filter; LQE, linear
quadratic estimator; LQR, linear quadratic regulator; LVLH, local vertical
local horizontal; MIMO, multi-input multi-output; MP, moving platform;
NLP, nonlinear programming; ONR, Office of Naval Research; PWM, pulse
width modulator; RTAI, Real-Time Application Interface; S/C, spacecraft;
SNOPT, Sparse Nonlinear OPTimizer; TS, translational stage
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in cost, responsiveness, and flexibility of a multi-spacecraft
system versus the classical monolithic satellite.

Particularly new is the use of continuous on–off engines,
appearing on small spacecraft. This control constraint adds
new complexity to finding the optimal solution. In fact, most
of the literature on spacecraft optimal control assumes that
the thrust can be finely modulated, partially to mitigate the
aforementioned problem. Unfortunately, this is not the case
with real engines, which are usually limited to some sus-
tained value for thrust. As a partial response to this problem,
a new methodology has been presented in [2] with the aim
to control spacecraft rendezvous maneuvers assuming multi-
level continuous thrusters and impulsive thrusters on the
same vehicle. Furthermore, very recently, the interests of the
Department of Defense have been focusing on time/pro-
pellant optimal rendezvous and capture maneuvers of a non-
cooperative target satellite [3–5]. This research has been

pushing the envelope with regards to fast computation of
practical optimal/sub-optimal trajectories.

The recent numerical approaches to the optimal control
problem could be in short classified in two main categories:

1. the indirect methods which employ the calculus of
variations to obtain the first-order optimality conditions
[6], where the resulting boundary-value problem is
sometimes impossible or time-consuming to solve;

2. direct methods which approximate the trajectory via
parameterization, and transform the cost functional into
a cost function [7–9].

These second methods appear to be a viable tool for
real-time spacecraft optimal control. However, the major
issues with direct methods relate to the difficulties of
defining parameters to represent feasible trajectories. The

Nomenclature

0m�n zero matrix with dimensions m, n
A state matrix (Jacobian)
Arot state matrix rotational contribute
Atransl state matrix translational contribute
B input matrix (Jacobian)
Btransl input matrix translational contribute
Brot input matrix rotational contribute
C output matrix
D feedforward matrix
d thrusters moment arm with respect to the

center of rotation of the AS [d¼0.32 m]
EDCMB direction cosine matrix from the body (B) to

the inertial reference frame (E) [23]
F propellant cost (–)
F generalized force vector (F;M)
Ft nominal thrust (Ft¼0.3 N)
Fthrust force generated by the onboard thrusters (N)
F LQR optimal generalized force, output of the LQR

Simulink block
G universal gravitational constant (m3 kg�1 s�2)
H thruster distribution matrix or

mapping matrix
Hf force term of the thruster distribution matrix

H
Hm torque term of the thruster distribution matrix

H (m)
Im�n identity matrix with dimensions m, n
J inertia matrix (kg m2)
J global maneuver cost (–)
K Kalman gain
Kpos, Krot additional dimensionless gains characterizing

the adaptive tuning, applied to the state
weighting matrix position and angular
terms only

M angular momentum vector (N m)
M� Earth mass (kg)
μ� Earth gravitational parameter μ¼ GM�

(m3 s�2)

m spacecraft simulator mass (kg)

n¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ� =R3

0

q
generic orbital rate (rad/s)

ω angular velocity vector (rad/s)
ωx;ωy;ωz angular velocity vector components (rad/s)
P solution of the Riccati differential equation
P position cost (–)
p thrusters inclination with respect to the ima-

ginary square circumscribed to the attitude
stage basis (p¼ cos ð451Þ ¼ sin ð451Þ)

Q state weighting matrix (mixed dimensions to
generate dimensionless cost)

Q transl state weighting matrix translational
contribute

Q rot state weighting matrix rotational contribute
R input weighting matrix (mixed dimensions to

generate dimensionless cost)
R0 generic orbit radius (m)
ωkin _θ kinematics matrix relating the time derivative

of the Euler angles with the angular velocity
[23]

ρ additional gain influencing the input weight-
ing matrix (–)

θ Euler angles vector (rad)
θx;θy;θz Euler angles (rad)
U� generic LQR optimal solution
Ucont normalized continuous thrust vector (N)
Ucost net propellant expenditure (–)
u10 normalized binary thrust vector (–)
ua dimensionless parameter with magnitude

correspondent to the nominal thrust
vx; vy; vz linear velocity vector components (m/s)
X generalized state vector (x; _x;θ;ω)
Xdes desired generalized state
Xerr actual error vector
x position vector (m)
_x linear velocity vector (m/s)
x; y; z position vector components (m)
Y output vector
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