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a b s t r a c t

A computational procedure is presented for approximating elliptic halo orbits about the
collinear equilibrium points based on the variation of constants in the sense of the
second-order approximation. Simulation results show that the approximate solutions
agree well with the results of two-point boundary-value problems. The existence
conditions of the elliptic halo orbits are also determined with respect to the mass ratio
of the primaries and the eccentricity.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the restricted three-body problem, the Lagrangian
points consist of three collinear equilibrium points, called
L1, L2, and L3, and two triangular equilibrium points, called L4
and L5. The triangular equilibrium points are stable equilibria
when the mass ratio between the primaries is small,
whereas the collinear equilibrium points are unstable equili-
bria regardless of the mass ratio. Despite instability issues,
orbits around the collinear equilibrium points are important
for scientific missions, e.g., ISEE-3 [14], SOHO [5], and SPICA
[11,19].

The orbital eccentricity of the Sun–Earth system is 0.0167.
The circular restricted three-body problem (CR3BP), in which
the orbital eccentricity is specified to be zero, is an applicable
framework for analyzing halo orbits about the collinear Sun–
Earth Lagrangian points. Farquhar considered the concepts of
the Lissajous orbit and the halo orbit [6–8]. Richardson
proposed a systematic method for obtaining analytical

approximations of halo orbits by using the method of
Lindstedt–Poincaré [12–14]. Breakwell and Brown [1] and
Howell [10] numerically computed halo orbits.

The orbital eccentricity of the Earth–Moon system is
0.0549. The elliptic restricted three-body problem (ER3BP),
in which the orbital eccentricity is specified to be above
zero, is a framework that is more applicable to the analysis
of halo orbits about the collinear Earth–Moon Lagrangian
points. Brenton et al. computed halo orbits about triangu-
lar equilibrium points by using the canonical perturbation
theory [2,3]. Hou et al. computed halo orbits by using the
method of Lindstedt–Poincaré [9]. Campagnola et al.
numerically computed halo orbits by using a continuation
method from the computed orbits of the CR3BP with a
period synchronous to that of the primaries [4]. A recent
survey and several extensions on halo orbits can be found
in [17,18,20,21]. An accurate first guess is essential for
numerical computation because elliptic halo orbits about
collinear equilibrium points are actually unstable orbits.

In this study, elliptic halo orbits about the collinear
equilibrium points are analyzed based on the variation of
constants. The equations of motion of the ER3BP are
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expanded in a Taylor series about the equilibrium points
with respect to the eccentricity of the primaries. The
zeroth terms, which correspond to linearized equations
of the CR3BP, are selected to form an unperturbed system,
and the remaining terms are regarded as the perturbation
terms. Approximate solutions based on the variation of
constants reflect the structure of solutions for the CR3BP.
By expanding the perturbed system with respect to the
eccentricity and the x-, y-, and z-components, the solu-
tions can be sequentially approximated for given zeroth-
order components of the approximate solutions. By select-
ing the initial conditions satisfying three conditions, such
as the bounded, synchronization, and resonance condi-
tions, second-order approximations of the elliptic halo
orbits are obtained. In this way, the approximate solutions
are systematically obtained. The effectiveness of the pro-
posed computational procedure will be demonstrated by
numerical simulations. Moreover, the existence conditions
of the elliptic halo orbit are determined with respect to the
mass ratio of the primaries and the eccentricity. These
conditions will also be demonstrated by numerical simu-
lations for the collinear points L1 and L2.

The paper is composed as follows: in Section 2, the
perturbation equations are formulated for the ER3BP and
analytical approximations of the elliptic halo orbits are
obtained based on the variation of constants. A compar-
ison between the approximations and numerical results is
presented in Section 3, and the existence conditions of the
elliptic halo orbits are also analyzed in Section 4. Finally,
conclusions from this work are given in Section 5. An
implementation of the method of the variation of con-
stants is described in Appendix A and a comparison
between the proposed method and the method of Lind-
stedt–Poincaré is presented in Appendix B.

2. Elliptic halo orbits

2.1. Second-order approximation of elliptic halo orbits

In the ER3BP, the first and the second bodies, called the
primaries, move in elliptic orbits about their center of
mass, and the third body, called the spacecraft, which has
negligible mass, moves under the gravitational forces of
the primaries. The mass ratio of the smaller primary to the
total mass is given by ρ¼M2=ðM1þM2Þ, where M1 and M2

denote the masses of the larger and the smaller primaries.
The distance between the primaries is given by

r12 νð Þ ¼ að1�e2Þ
1þe cosν

; ð1Þ

where a, e, and ν denote the semi-major axis, the eccen-
tricity, and the true anomaly of the primaries, respectively.
The unit distance is normalized so that the distance
between the primaries is equal to one. Let r¼ ½x y z�T
denote the normalized position vector of the third body
in the rotating frame with the origin at the center of mass
of the primaries, where the x-axis points from the larger
primary to the smaller primary, the z-axis points in the
direction of the angular velocity vector of the primaries,
and the y-axis completes the right-handed coordinate
system. The normalized equations of motion of the ER3BP

are given by [16]

x″�2y0 ¼ �∂Ue

∂x
; ð2Þ

y″þ2x0 ¼ �∂Ue

∂y
; ð3Þ

z″ ¼ �∂Ue

∂z
; ð4Þ

where the true anomaly of the primaries, ν, serves the
independent variable, ðÞ0 ¼ dðÞ=dν, ðÞ″ ¼ d2ðÞ=dν2, and Ue is
given by

Ue r;νð Þ ¼ � 1
1þe cosν

1�ρ
r1

þ ρ
r2
þ1
2

x2þy2�e cosνz2
� �� �

;

ð5Þ

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþρÞ2þy2þz2

q
; ð6Þ

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�1þρÞ2þy2þz2

q
: ð7Þ

The Lagrange points consist of three collinear equili-
brium points, called L1, L2, and L3, and two triangular
equilibrium points, called L4 and L5, of Eqs. (2)–(4) (see
Fig. 1). Let xLn denote the x-component of the collinear
equilibrium points about Lnðn¼ 1;2;3Þ. By substituting
y¼ z¼ 0 into

∂Ue

∂x
¼ 0; ð8Þ

xL3 , xL1 , and xL2 are determined from the three solutions of

x 1� 1�ρ
jxþρj3�

ρ
jx�1þρj3

� �
�ρ 1�ρ
� � 1

jxþρj3�
1

jx�1þρj3
� �

¼ 0

ð9Þ
in increasing order. Eq. (9) coincides with that of the
CR3BP and is independent of ν and e. This fact means that
the ratio of the distance between the equilibrium points
and that between the primaries is constant in the ER3BP.
This fact means that the relative location of the collinear
points and the primaries in the rotating frame are constant
in the ER3BP.
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Fig. 1. The Lagrangian points, L1 ;…; L5, in the rotating frame.
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