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a b s t r a c t

Discrete event models are frequently used in simulation studies to model and analyze pure jump
processes. A discrete event model can be viewed as a system consisting of a collection of stochastic
processes, where the states of the individual processes change as results of various kinds of events
occurring at random points of time. We always assume that each event only affects one of the processes.
Between these events the states of the processes are considered to be constant. In the present paper we
use discrete event simulation in order to analyze a multistate network flow system of repairable
components. In order to study how the different components contribute to the system, it is necessary to
describe the often complicated interaction between component processes and processes at the system
level. While analytical considerations may throw some light on this, a simulation study often allows the
analyst to explore more details. By producing stable curve estimates for the development of the various
processes, one gets a much better insight in how such systems develop over time. These methods are
particulary useful in the study of advanced importancez measures of repairable components. Such
measures can be very complicated, and thus impossible to calculate analytically. By using discrete event
simulations, however, this can be done in a very natural and intuitive way. In particular significant
differences between the Barlow–Proschan measure and the Natvig measure in multistate network flow
systems can be explored.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Discrete event models are frequently used in simulation studies
to model and analyze pure jump processes. For an extensive
introduction to discrete event models we refer to [7]. A discrete
event model can be viewed as a system consisting of a collection of
stochastic processes (the elementary processes of the system),
where the states of the individual processes change as results of
various kinds of events occurring at random points of time. We
always assume that each event only affects one of the elementary
processes. Between these events the states of the processes are
considered to be constant.

Let S(t) denote the state of a pure jump process at time t≥0, let
T1oT2o⋯ denote the points of time of the events affecting
the process, and let T0 ¼ 0. We assume that S(t) can be written

in the following form:

SðtÞ ¼ Sð0Þ þ ∑
∞

k ¼ 1
IðTk ≤tÞJk; t≥0; ð1Þ

where Ið�Þ denotes the indicator function, and Jk denotes the
change in the state of the process at time Tk. This implies that
the state function S(t) is piecewise constant and right-continuous
in t, with jumps at T1oT2o⋯.

The fact that a pure jump process is right-continuous and
piecewise constant in t is convenient during simulations. Hence, in
order to keep track of how the process evolves and update the
value of the state function, only the points of time where the
events happen need to be considered.

The infinite sum in (1) indicates that the number of events
occurring in the interval ½0; t� is unbounded. The possibility of
having an infinite number of events in ½0; t�, however, may cause
various technical difficulties. In particular, this may cause simula-
tions to break down since an infinite number of events need to be
generated and handled. To avoid these difficulties, we always
assume that the number of events occurring in any finite interval
is finite with probability one. A pure jump process satisfying this
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assumption is said to be regular. For some basic results on
regularity we refer to [10].

Stationary statistical properties of a system can easily be
estimated by running a single discrete event simulation on the
system over a sufficiently long time horizon, or by working
directly on the stationary probability distributions of the elemen-
tary processes. Sometimes, however, one needs to estimate how
the statistical properties of the system evolve over time. In such
cases it is necessary to run many simulations to obtain stable
results. Moreover, one must store much more information from
each simulation. A possible approach to this is sampling the
system state at fixed intervals of time, and then use the mean
values of the states at these points as estimates of the correspond-
ing properties. Alternatively, one may apply a more advanced
sampling procedure where process data between the sampling
points are utilized as well.

In the present paper we use discrete event simulation in order
to analyze a multistate network flow system of repairable compo-
nents. In order to study how the different components contribute
to the system, it is necessary to describe the often complicated
interaction between component processes and processes at the
system level. While analytical considerations may throw some
light on this, a simulation study often allows the analyst to explore
more details.

When a system is evaluated from a reliability or availability
perspective, it is often of interest to identify the most important
components in the system. Since the pioneer work of [3] several
approaches to this problem have been suggested. See e.g., [1,2,15].
The present paper is based on a recent paper in this area [17] and
extends [10, 19] covering the binary case. See also [20]. The main
focus here is to show how advanced importance measures of
repairable components in multistate network flow systems can be
computed using discrete event simulations. This approach allows
us to explore in a new and intuitive way how the different
importance measures incorporate information about the different
components of the system. Examples of contributions to the area
of component importance in multistate systems are presented in
[22,21,26,25] and some references therein. The latter paper pro-
vides an interesting application to the railway industry. Further-
more, a part of the recent book [12] is devoted to this area.

For convenience we have included a list of symbols in Table 5.

2. Multistate systems

Most of the reliability theory literature focuses on binary
systems, i.e., systems with only two states: functioning or failed.
See e.g., [2]. In many real life applications, however, systems have
more than two states. Among the first papers introducing a
general theory of multistate systems are [5,8,16]. Rather recent
books in this area are [14,13,18].

A typical example of a multistate system is a network flow
system where the state of the system may be defined as the flow
capacity of the system. Depending on the number of functioning
links in the system, this capacity varies between full capacity and
zero capacity, but with several intermediate states as well. Flow
networks are the topic of the very recent interesting book [24]. For
a thorough treatment of the more fundamental theory of network
systems and stochastic networks we refer to [4].

Motivated by this example we consider a multistate system
with component set C ¼ f1;…;ng. The state of the ith component
at time t≥0 is denoted by Xi(t), i¼ 1;…;n. We also introduce the
component state vector XðtÞ ¼ ðX1ðtÞ;…;XnðtÞÞ. The components of
the system may be in several different states ranging from the
perfect functioning state down to the complete failure state. We let
Si ¼ fsi0; si1;…; siri g denote the set of possible states for the ith

component, i¼ 1;…;n. We assume that the states are ordered so
that si0osi1o⋯osiri . In particular si0 denotes the complete fail-
ure state, while siri denotes the perfect functioning state. For
simplicity we assume that we always have si0 ¼ 0.

Here we assume that the components are repairable. The life
cycle of the ith component starts out with the component being in
its perfect functioning state, siri . Then the state of the component
degrades through all intermediate states, and ends up in the
complete failure state si0. After that the component is repaired
back to its perfect functioning state again, and a new life cycle
begins. In order to model this we introduce the following random
variables:

UðkÞ
ij ¼ The kth time spent by the ith component in state sij; ð2Þ

where i¼ 1;…;n, j¼ 0;1;…; ri and k¼ 1;2;…. All these random
variables are assumed to be stochastically independent. This
implies in particular that the component states X1ðtÞ;…;XnðtÞ are
independent for each t≥0. Furthermore, we assume that Uð1Þ

ij ;

Uð2Þ
ij ;… are identically distributed with an absolutely continuous

distribution with a positive mean value μijo∞, i¼ 1;…;n,
j¼ 0;1;…; ri.

The system state at time t≥0 is denoted by ϕðtÞ and we assume
that this is uniquely determined by the component states, that is
ϕðtÞ ¼ ϕðXðtÞÞ. The function ϕ will be referred to as the structure
function of the system.

In the present paper we will focus our attention on a specific
class of multistate systems. The main reason for this is that this
enables us to establish an efficient representation of the system
which will be needed in the calculations. More specifically, we
assume that the system state is defined relative to a family of non-
empty sets of components, C1;…;Cc , where CrDC, r¼ 1;…; c. We
assume that all the sets are unique, and that no set is a proper
subset of another. We refer to C1;…;Cc as the minimal cut sets of
the system. If a component i is a member of a minimal cut set Cr,
its contribution to this minimal cut set at time t is given by its state
at this time. The state of a minimal cut set Cr at time t, referred to
as the capacity of Cr, and denoted by ξrðtÞ, is then given by

ξrðtÞ ¼ ∑
i∈Cr

XiðtÞ; r¼ 1;…; c: ð3Þ

The structure function, ϕðtÞ, is then assumed to have the following
form:

ϕðXðtÞÞ ¼ min
1 ≤ r ≤ c

∑
i∈Cr

XiðtÞ ¼ min
1 ≤ r ≤c

ξrðtÞ: ð4Þ

Thus, we see that the state of the system can be interpreted as the
state of the minimal cut set with the lowest capacity. This property
is motivated by the well-known max-flow-min-cut theorem for
calculating the flow capacity of a network. See [6]. In fact, by this
theorem it follows that every network flow system can be
represented by a model of the form (4). A multistate systemwhere
the structure function can be represented as in (4) is called a flow
type multistate system.

As an example of a flow type multistate systemwe consider the
network shown in Fig. 1. The components of the system are the
five edges labeled 1;…;5. The network represents a system
transporting a flow of say oil from the source node A to the
terminal node B. We assume that each edge has a maximum flow
capacity of two units per second. Under certain circumstances,
however, the capacity may drop to just one unit. This is reflected
by letting the states of the components be defined as the
corresponding flow capacities. That is, we interpret Xi(t) as the
number of units of oil that can flow through the ith edge at time t,
and assume that XiðtÞ∈Si ¼ f0;1;2g, i¼ 1;…;5.

The system state is defined as the amount of oil that can be
transported from A to B. In order to determine this we start out by
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