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a b s t r a c t

A new modified Weibull extension distribution is proposed by Xie et al. [20]. Recently, El-Gohary et al.

[9] proposed a new distribution referred to as the generalized Gompertz distribution. In this paper, we

propose a new model of a life time distribution that mainly generalizes these two distributions.

We refer to this new distribution as the exponentiated modified Weibull extension distribution.

This distribution generalizes, in addition to the above two mentioned distributions, the exponentiated

Weibull distribution, the generalized exponential and the generalized Rayleigh distributions. Parameter

estimation of the four parameters of this distribution is studied. Two real data sets are analyzed using

the new distribution, which show that the exponentiated modified Weibull extension distribution can

be used quite effectively in fitting and analyzing real lifetime data.

Crown Copyright & 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Weibull distribution is one of the most commonly used life-
time distributions in reliability and lifetime data analysis. It is
flexible in modeling failure time data, as the corresponding
hazard rate function can be increasing, constant or decreasing.
But in many applications in reliability and survival analysis, the
hazard rate function can be of bathtub shape. The hazard rate
function plays a central role to the work of reliability engineers,
see Lai and Xie [13] and Bebbington et al. [3,4] and references
therein. Models with a bathtub hazard rate function are needed in
reliability analysis and decision making when the life time of the
system is to be modeled.

Many parametric probability distributions have been intro-
duced to analyze sets of real data with bathtub-shaped hazard
rates. The bathtub-shaped hazard function provides an appropriate
conceptual model for some electronic and mechanical products as
well as the lifetime of humans. Some work on parametric prob-
ability distributions with bathtub-shaped hazard rate functions
have been considered by different authors. The exponential power
distribution was suggested by Smith and Bain [19], and it was
studied by Leemis [15]. A four parameter distribution was pro-
posed by Gaver and Acar [10]. A similar distribution with increas-
ing, decreasing, or bathtub-shaped hazard rate has been considered
by Hjorth [12]. An exponentiated Weibull distribution with three
parameters was suggested by Mudholkar and Srivastava [17].

Chen [8] discussed an interesting two-parameter model that
can be used to model bathtub-shaped hazard rate function.
Though this distribution has only two parameters, it shows a
bathtub shaped hazard rate. However, it is not flexible because it
does not include a scale parameter. Xie et al. [20] proposed a new
modified extension of the Weibull distribution with a bathtub-
shaped hazard rate function. We refer to this extension as the
new modified Weibull extension (MWE) distribution. The MWE
generalizes the two-parameter model discussed by Chen [8] and
it includes one scale parameter and two shape parameters.

The cumulative distribution function of the MWE distribution
[20] is

FMWEðx; l,a,bÞ ¼ 1�expfla½1�eðx=aÞ
b
�g, xZ0, l,a,b40: ð1Þ

Setting a¼ 1 in (1), we get the cdf of the two-parameter
distribution discussed by Chen [8] as a sub-model of the MWE
distribution.

Since 1995, exponentiated distributions have been widely
studied in statistics and numerous authors have developed
various classes of these distributions. A good review of some of
these models is presented by Pham and Lai [18].

Mudholkar and Srivastava [17] proposed the exponentiated
Weibull distribution (EW or EW ðs,b,gÞ), with the following cdf:

FEWðx;s,b,gÞ ¼ 1�exp �
x

s

� �b� �� �g
, xZ0, s, b, g40: ð2Þ

El-Gohary et al. [9] proposed the exponentiated Gopertz distribu-
tion, and referred to it as the generalized Gompertz (GG)
distribution, whose cdf is of the form

FGGðx; l,c,gÞ ¼ 1�exp
l
c
ð1�ecxÞ

� �� �g
, l, c, g40: ð3Þ
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Though some distributions such as the exponentiated Weibull
distribution, modified Weibull extension and generalized Gom-
pertz distribution are known to have bathtub-shaped hazard rate,
they may not be able to give a good bathtub shape of the hazard
rate (see [21]). However, there are fewer models whose hazard
rate curves are similar to the actual bathtub shape. Zhang et al.
[21] discussed the parametric analysis of some models which
exhibit a good bathtub shaped hazard rate.

In this paper, we propose a new distribution which generalizes
the above three distributions, with the hope that it will attract
many applications in different fields such as reliability, lifetime
data analysis, and others. This new distribution exhibits a good
bathtub shaped hazard rate which is very similar to the actual
bathtub curve. Mainly, we consider our new distribution as a
generalization of the MWE distribution. On the other hand, it can
be considered as a generalization of the GG distribution as well as
the EW distribution. We will refer to this new distribution as the
exponentiated modified Weibull extension (EMWE) distribution.
The EMWE distribution contains as special sub-models, in addi-
tion to the above three mentioned distributions, many distribu-
tions such as exponential, generalized exponential, Weibull,
Rayleigh, generalized Rayleigh, among others. Due to the flex-
ibility of the EMWE in accommodating different forms of the
hazard rate functions, especially the ones which have wide flat
portions, it seems to be a suitable distribution that can be used in
a variety of problems for fitting reliability data. The EMWE
distribution is not only convenient for fitting bathtub-shaped
hazard rate data but it is also suitable for testing goodness-of-fit
of some special sub-models such as the MWE, EW, and GG
distributions.

The rest of the paper is organized as follows. In Section 2, we
introduce the EMWE distribution, discuss some special sub-
models and provide its cumulative distribution function (cdf),
the probability density function (pdf) and the hazard function.
A formula for generating random samples from the EMWE
distribution is also given in Section 2. Section 3 discusses some
important statistical properties of the EMWE distribution such as
the ordinary moments and measures of skewness and kurtosis.
Section 4 discusses the parameter estimation process using
maximum likelihood estimates. Two applications to real data
are provided in Section 5. Section 6 concludes the paper. The
paper also contains an Appendix giving technical details.

2. The EMWE distribution

The cdf of the exponentiated modified Weibull extension
distribution with four parameters y¼ ða,b,l,gÞ, abbreviated as
EMWE distribution, is

Fðx; yÞ ¼ ½1�elað1�eðx=aÞ
b
Þ�g, l, a, b, g40, xZ0: ð4Þ

The probability density function of the EMWEðyÞ distribution is

f ðx; yÞ ¼ lbg x

a

� �b�1

eðx=aÞ
b
þlað1�eðx=aÞb Þ½1�elað1�eðx=aÞ

b
Þ�g�1,

l,a, b, g40, xZ0: ð5Þ

The hazard rate function of the EMWEðyÞ distribution is

hðx; yÞ ¼
lbg x

a

� �b�1

eðx=aÞ
b
þlað1�eðx=aÞb Þ

½1�elað1�eðx=aÞb Þ�1�gþelað1�eðx=aÞb Þ�1
, l, a, b, g40, xZ0:

ð6Þ

One can see from Fig. 1 that the hazard function: (1) takes a
bathtub shape if either go1 whatever the value of b or bo1
whatever the value of g and (2) is increasing if bZ1 and gZ1. The
bathtub-shaped curve of Fig. 1(b) has quite a long flat part which

is very similar to the actual bathtub shaped curve. The EMWE
distribution has two scale (a, l) and two shape (b,g) parameters
and generalizes several well known distributions. The following is
a list of well known sub-models of the EMWE distribution.

When the scale parameter a becomes very large or tends to
infinity while ab�1=l remains constant, the EMWE distribution
reduces to the exponentiated Weibull with scale parameter
ab�1=l and shape parameters b and s¼ ab�1=l, say EWðs,b,gÞ.

When b¼ 1 and a becomes very large or tends to infinity while
ab�1=l remains constant, the EMWE distribution reduces to the
generalized exponential distribution with a scale parameter 1=l
and shape parameters g, say GE ð1=l,gÞ, see Gupta and Kundu
[11].

When b¼ 1, the EMWE distribution reduces to the generalized
Gompertz distribution with scale parameters l and c¼ 1=a and
shape parameter g, say GG ðl,c,gÞ, see El-Gohary et al. [9].

When g¼ 1 and a¼ 1, the EMWE reduces to the distribution
in Chen [8] with shape parameters l and b.

The pdf of the EMWE distribution (5) can be written as a linear
combination of the pdf of MWE distribution. For g40, a series
expansion for ð1�wÞg�1, for 9w9o1, is

ð1�wÞg�1
¼
X1
j ¼ 0

ð�1ÞjGðgÞ
Gðg�jÞj!

wj, ð7Þ

where Gð:Þ is the gamma function. Since for x40,
SMWEðxÞ ¼ SMWEðx; l,a,bÞ ¼ expfla½1�eðx=aÞ

b
�go1, then using the

series expansion (7) in (5), we obtain

f ðx; yÞ ¼
X1
j ¼ 0

ð�1ÞjGðgþ1Þ

Gðg�jÞðjþ1Þ!
f MWEðx; ðjþ1Þl,a,bÞ: ð8Þ

When g is a positive integer, the index j in (8) stops at g�1.
The linear combination (8) enables us to obtain some mathema-
tical properties of EMWE directly from those of the MWE
distribution such as, the moments, the moment generating func-
tion, characteristic function.

There are many softwares such as MATLAB, MAPLE and
MATHEMATICA that can be used to compute (8) numerically.

Advantage 1: One of the advantages of the EMWE distribution
is that it has a closed form cdf, which can be used to generate
random numbers from it by using the following simple formula:

X ¼ a �ln 1�
1

al lnð1�U1=g
Þ

� �� �a=b

, ð9Þ

where U is a uniformly distributed random variable on (0, 1)
interval. The formula (9) can be used to generate random samples
from a wide set of sub-models of the EMWE distribution such as
the exponential, generalized exponential, Rayleigh, generalized
Rayleigh, Weibull, modified Weibull extension, Exponentiated
Weibull, Gompertz and generalized Gompertz distributions.

Interpretation: When g is a positive integer, the EMWEðyÞ
distribution can be interpreted as the lifetime distribution of a
parallel system consisting of g independent and identical units
whose lifetime follows the MWE ðl,a,bÞ distribution.

3. The moments, skewness and kurtosis

The k-th ordinary moment of the EMWE distribution can be
written as linear combination of those for the MWE distribution.
Let mkðyÞ and mk,MWEðl,a,bÞ be the k-th moments of the EMWE and
MWE distributions, respectively, then

mkðyÞ ¼
X1
j ¼ 0

ð�1ÞjGðgþ1Þ

Gðg�jÞðjþ1Þ!
mk,MWEððjþ1Þl,a,bÞ: ð10Þ
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