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a b s t r a c t

The identification of trajectories that target a precise location and approach vector during

planetary entry is sensitive to the quality of the startup arc supplied to iterative path

planning and guidance algorithms. These sensitivities are especially evident when multi-

body effects are significant; low-energy spacecraft trajectories that dwell near the

gravitational boundary of two bodies, for instance, are more susceptible to third-body

effects. Dynamical sensitivities are also significant when maneuvers are scheduled

within a region of space susceptible to multi-body effects. The present study considers

precision entry targeting from the perspective of the multi-body problem.

& 2013 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Precision entry targeting, in this study, refers to the
identification of all maneuvers necessary to guide the vehicle
to a specific location on a rotating body with a pre-specified
approach vector at entry interface. In the present study,
precision entry targeting is considered in the context of the
perturbed restricted three body problem. The primary bodies
under consideration are the Earth and the Moon and the
problem is defined as ‘‘restricted’’ because the mass of the
spacecraft is assumed to be significantly smaller than that of
the primaries. Furthermore, ‘‘perturbed’’ suggests that
the motion of the primary bodies is consistent with an
ephemeris model; that is, the position and velocity of the
primaries are derived from planetary ephemerides. In

the perturbed restricted three-body problem, targeting
processes (optimal or suboptimal) are sensitive to the quality

of the startup solution provided. Generally speaking, gradi-

ent based targeting algorithms, whether optimal or subopti-

mal, are not self-starting and thus depend on the availability

of a reasonably accurate initial guess (i.e. startup solution).

Since the dynamical model is not time invariant, the success

of any targeting process can be sensitive to both the

temporal and spatial scheduling of deterministic maneuvers

along the path.
Startup arcs employed in iterative path planning and

guidance algorithms often rely on conic or patched-conic

approximations for the identification of startup solutions.

Of course, two-body approximations are not always

sufficiently accurate for trajectory design in multi-body

regimes. This is particularly true when the path of the

vehicle is expected to escape the Hill sphere with a

relatively low energy level. As the vehicle transitions

through a dynamically sensitive region, the gravitational

influence of the primaries and the perturbing bodies can
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introduce significant deviations from the intended path.

This, in turn, affects the efficiency of iterative path

planning and guidance algorithms that seek to fine

tune the transfer parameters to achieve a precise set of

entry conditions at a specific body within a multi-body

system. It also affects the subset of phase space explored

by the algorithms in attempting to identify a feasible

transfer.
The manifestation of these dynamical sensitivities is

easily observed in the three-maneuver trans-Earth injec-
tion (TEI) sequence originally envisioned to transfer the
Orion vehicle from low lunar polar orbit to a specified
Earth arrival condition [1]. The initial design of this
sequence, rooted in two-body analysis, is illustrated in
Fig. 1(a) and the associated maneuver schedule is shown
in Fig. 1(b). The first maneuver (TEI-1), in Fig. 1, seeks to
raise the apoapsis of the initial lunar orbit. The second
maneuver (TEI-2) executes a change in orbital inclination.
The third and final maneuver (TEI-3) injects the spacecraft
into its final return path.

The present investigation offers some preliminary
insight into the precision entry problem in multi-body
regimes. Initially, this is accomplished by generating an
ensemble of dispersion trajectories associated with a
representative set of possible entry interface states rela-
tive to the rotating target body. This ensemble of disper-
sion trajectories represent a subset of a ‘‘manifold’’
surface associated with a particular entry interface state.
That is, this surface represents the subset of the dynami-
cal flow that converges onto the vicinity of the specified
entry state. The perturbed restricted three-body problem
serves as the initial framework for this analysis. A funda-
mental understanding for the interaction between the
dispersion manifolds and the Hill sphere is sought. The
goal is to assess entry constraint coupling and sensitivities
which may affect the process by which startup arcs, for
targeting, guidance, and optimization processes, are sub-
sequently identified.

2. Background

The Hill sphere is defined in the synodic rotating frame
of the circular restricted three-body problem (CR3BP) [2].
In this frame, it is assumed that the primaries evolve along
circular orbits about their common center of mass. The
rotating x-axis is directed from the larger to the smaller
primary such that both remain equidistant along that line
for all time. The z-axis is normal to the plane of their orbits
while the y-axis completes the right-handed triad. The Hill
sphere itself is centered at the smaller of the two primary
bodies. In the Earth–Moon system, the radius of the sphere
(rs) is approximately determined as [3]

rs ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mMoon

3mEarth

3

r
: ð1Þ

where mEarth and mMoon represent the gravitational para-
meters for the Earth and Moon, respectively, and a is the
semi-major axis of the Moon’s orbit around the Earth. In
this system, the relative size of the Hill sphere, in relation
to the Earth, Moon, and the libration points of the CR3BP, is
illustrated in Fig. 2.

Since the Hill sphere is defined in the CR3BP, where
the primary bodies remain equidistant for all time,
identifying an equivalent Hill sphere in the general
perturbed three-body problem requires that all trajec-
tories be transformed into a properly scaled set of
coordinates. For instance, if the Earth–Moon dynamics
are derived from ephemeris information, the inertial (I)
position and velocity vectors of the Moon, with respect to
the Earth, in terms of inertial coordinates are given by rEM

I

and IvEM
I , respectively. These vectors are then used to

define an instantaneous synodic rotating frame (R) in
terms of unit vectors r̂1, r̂2, and r̂3 where

r̂1 ¼
rEM

I

JrEM
I J

, ð2Þ
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Fig. 1. Orion trans-Earth trajectory and maneuver schedule. (a) Return trajectory. (b) Maneuver schedule.

B.G. Marchand et al. / Acta Astronautica 89 (2013) 107–120108



Download English Version:

https://daneshyari.com/en/article/8057077

Download Persian Version:

https://daneshyari.com/article/8057077

Daneshyari.com

https://daneshyari.com/en/article/8057077
https://daneshyari.com/article/8057077
https://daneshyari.com

