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This paper addresses the Input Covariance Constraint (ICC) control problem with guaranteed H∞
performance for continuous-time Linear Parameter-Varying (LPV) systems. The upper bound of the output 
covariance is minimized subject to the constraints on input covariance and H∞ output performance. 
This problem is an extension of the mixed H2/H∞ LPV control problem, in that the resulting gain-
scheduling controllers guarantee not only closed-loop system robustness in terms of H∞ norm bound 
but also output covariance performance over the entire scheduling parameter space. It can be shown 
that this problem can be efficiently solved by utilizing the convex optimization of Parameterized Linear 
Matrix Inequalities (PLMIs). The main contributions of this paper are to characterize the mixed ICC/H∞
LPV control problem using PLMIs and to develop the optimal state-feedback gain-scheduling controllers, 
while satisfying both input covariance and H∞ constraints. The effectiveness of the proposed control 
scheme is demonstrated through vibration suppression of a blended-wing-body airplane model.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Linear Parameter-Varying (LPV) modeling and control have 
gained significant interest from the control community over the 
past two decades [1–4]. The main benefit of LPV control is that 
the varying nature of system dynamics can be captured by the LPV 
model with its linear system matrices dependent on scheduling 
parameter. LPV controllers can be designed with its gain sched-
uled based on scheduling parameters measured in real-time.

A systematic LPV modeling approach was proposed in our pre-
vious publication [5,6] for developing reduced-order LPV models 
for flexible aerospace structures. The sub-sequential LPV control 
design based on developed LPV models is presented in this arti-
cle. The mainstream approach of LPV gain-scheduling control de-
sign is to formulate control synthesis conditions in terms of Linear 
Matrix Inequalities (LMIs) or Parameterized Linear Matrix Inequal-
ities (PLMIs) [1,7,8]. Numerically tractable optimization methods, 
such as convex optimization, can then be applied to solve for 
feasible or optimal LPV gain-scheduling controllers. LPV control 
designs with guaranteed H2 and/or H∞ performance have been 
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intensively studied in the literature [9–12]. However, in practical 
aerospace structural control applications, control inputs are of-
ten hard-constrained and modeling error is unavoidable. Therefore, 
how to achieve optimal output performance when subject to con-
strained control input and bounded modeling error is a critical 
control design problem, but conventional LPV control design tech-
nique cannot handle such a design problem. Therefore, mixed In-
put Covariance Constraint (ICC) and H∞ LPV control is proposed in 
this paper to deal with this multi-objective optimal control prob-
lem.

As an extension of H2 control, the ICC control problem is to 
minimize the output covariance performance subject to the multi-
ple constraints on input covariance. The ICC control plays an espe-
cially important role for systems with hard constraints on control 
authority [13,14]. In practical applications, actuators are utilized 
to drive the mechanical systems to achieve desired output perfor-
mance, and these actuators typically have limited capacity. There-
fore, it is critical to incorporate these actuator constraints during 
control design, however, this has not been considered in the tradi-
tional LPV control formulation. In addition, the existing optimiza-
tion formulation for conventional LPV controller design often leads 
to high-gain controllers, due to the optima-seeking nature of the 
optimization process. These high-gain controllers would inevitably 
tend to drive the actuators beyond their physical limitations and 
could also degrade or even destabilize closed-loop systems [15]
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when the modeling error becomes significant. Furthermore, for 
multiple exogenous input scenarios, the problem of LPV control 
design to achieve the best possible performance is still an open 
research problem.

The dual of ICC problem is the Output Covariance Constraint 
(OCC) control problem, which is to minimize the control input 
covariance subject to the constraints on output covariance. Both 
ICC and OCC control problems for linear systems have been stud-
ied extensively in the past. For instance, a linear quadratic control 
problem minimizing control energy subject to output covariance 
constraints was first considered in Hsieh et al. [16]. In Zhu et 
al. [17] an algorithm with guaranteed convergence was proposed, 
in which the OCC problem was solved by optimally selecting the 
output weighting matrix and solving the Riccati equation itera-
tively. After the LMI technique was introduced, both ICC and OCC 
problems have subsequently been converted into the convex op-
timization problems with LMI constraints [18,19], and they were 
solved using convex optimization tools. Al-Jiboory et al. [19] uti-
lized the linear time-invariant (LTI) ICC control design approach to 
optimize the system performance, in terms of output covariance 
with given actuator constraints, for both state and output feedback 
cases. An application of the control synthesis LMI conditions can 
be found in Al-Jiboory et al. [18]. It should be emphasized that the 
OCC and ICC control problems mentioned above were all for LTI 
systems, and only a single H2 performance constraint was consid-
ered. In other words, there was no guaranteed robust performance 
for closed-loop systems when subject to modeling errors.

To meet multiple performance requirements, a mixed H2/H∞
LPV control strategy has been proposed with two separate per-
formance channels for H2 and H∞ performance specifications. 
Scherer et al. [20] formulated an H2/H∞ problem for LPV sys-
tems and provided the associated solution by solving the alge-
braic LMIs. In Scherer et al. [21] a solution to the output-feedback 
mixed H2/H∞ LPV control problem was presented. Apkarian et 
al. [22] developed a tractable and practical LMI formulation for the 
multi-objective LPV control problem using Linear Fractional Trans-
formation (LFT) representations. All these studies treat the mixed 
performance control problem without including control input and 
output performance constraints. Recently, White et al. [3,23] for-
mulated PLMI conditions to solve this multi-objective problem for 
polytopic discrete-time LPV systems, and provided a solution that 
guarantees L2 to L∞ gain and performance. Zhang et al. [24] de-
signed a multi-objective LPV controller for an electronic throttle, 
and showed that the multi-objective LPV controller is able to im-
prove closed-loop system performance over the baseline PID con-
troller.

The primary objective of this paper is to formulate the contin-
uous-time mixed ICC and H∞ control problem by utilizing PLMIs 
for the state-feedback case. To the best of authors’ knowledge, the 
gain-scheduling state-feedback robust ICC problem with guaran-
teed H∞ performance for continuous-time LPV systems has never 
been explored in the past. One of the great advantages of the pro-
posed approach is that it provides an effective way of designing 
a family of LPV controllers with varying gains, allowing to tune 
the controller gains for LPV systems, which is a capability of great 
practical significance. To illustrate the benefits of the proposed 
approach, a blended-wing-body airplane model is considered for 
vibration suppression. Although a full state-feedback controller has 
limited practical application, nonetheless it serves as a good basis 
for formulating the dynamic output feedback controllers.

The rest of paper is organized as follows. Section 2 formulates 
the mixed ICC and H∞ (or robust ICC) control problem, and Sec-
tion 3 provides LPV modeling of linear systems and introduces 
affine to multi-simplex transformation. Then, the control synthe-
sis conditions in terms of PLMIs are provided in Section 4, and the 

numerical simulations for the blended-wing-body model are con-
ducted in Section 5. The conclusions are in Section 6.

2. Problem formulation

Consider the following affine LPV systems,

�(θ) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ(t) = A(θ(t))x(t) + B∞(θ(t))w∞(t)
+ B2(θ(t))w2(t) + Bu(θ(t))u(t)

z∞(t) = C∞(θ(t))x(t) + D∞(θ(t))w∞(t)

+ E∞(θ(t))u(t)

z2(t) = C2(θ(t))x(t)

(1)

where θ(t) = [
θ1(t), θ2(t), . . . , θq(t)

]T
denotes the scheduling pa-

rameter vector of q elements, x(t) ∈ Rnx denotes the state, w∞(t) ∈
Rnw∞ the H∞ disturbance input due to modeling error, w2(t) ∈
Rnw2 the H2 disturbance input, u(t) ∈ Rnu the control input, 
z∞(t) ∈ Rnz∞ the H∞ controlled output, and z2(t) ∈ Rnz2 the H2

performance output. All system matrices are assumed to have 
compatible dimensions and in affine parameter-dependent form. 
For example, A(θ) can be described by

A(θ(t)) = A0 +
q∑

i=1

Aiθi , (2)

where A0 and Ai , i = 1, 2, . . . , q, are constant matrices. It is as-
sumed that the scheduling parameters are measurable in real-time, 
and their magnitude and variational rate are bounded. Specifically, 
the scheduling parameter set is formulated as:

θ ∈ � = {
θ i ≤ θi(t) ≤ θ̄i,−νθi ≤ θ̇i(t) ≤ νθi

}
, (3)

where i ∈ [1, 2, ..., q]. In this paper, we propose the gain-scheduling 
state-feedback controllers of the form

u(t) = K (θ(t))x(t), (4)

where K (θ) is the parameter-dependent control gain matrix. Note 
that u(t) can be partitioned as u(t) = [

u1(t), u2(t), . . . , unu (t)
]T

. 
Then, substituting (4) into (1) yields the closed-loop LPV system 
described by

�cl(θ) :
⎧⎨
⎩

ẋ(t) = Acl(θ)x(t) + B∞(θ)w∞(t) + B2(θ)w2(t);
z∞(t) = Ccl,∞(θ)x(t) + D∞(θ)w∞(t)

z2(t) = C2(θ)x(t)

(5)

where Acl(θ) = A(θ) + Bu(θ)K (θ), Ccl,∞(θ) = C∞(θ) + E∞(θ)K (θ). 
Throughout this paper, we make use of the following standard def-
inition of L2 and L∞ norms on x(t) ∈ Rn for all t ≥ 0,

‖x‖2
2 :=

∞∫
0

xT (t)x(t)dt , ‖x‖2∞ := sup
t≥0

x(t)T x(t) .

2.1. System performance

It should be noted that there are two separate input and output 
pairs defined in (5), and they are specifically designated for assess-
ing the closed-loop LPV system performances, as shown in Fig. 1. 
The LPV system �(θ) is controlled by the gain-scheduling state-
feedback controller (4), to achieve best H2 performance while 
subject to H∞ performance requirements and control input con-
straints. Note that the interconnection of � in Fig. 1 is to capture 
the model uncertainties in �(θ). The definitions of H∞ and H2
performances are given below.
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