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The aim of this article is to present a comprehensive methodology for the verification of computational 
fluid dynamics (CFD) solvers with a special attention to aspects pertinent to discretizations with orders of 
accuracy (OOAs) higher than two. The method of manufactured solutions (MMS) is adopted and a series 
of manufactured solutions (MSs) is introduced that examines various components of CFD solvers for free 
flows (not bounded by walls), including inviscid, laminar and turbulent problems when the latter are 
modeled by the Reynolds-averaged Navier–Stokes (RANS) equations. The treatment of curved elements is 
also examined. These MSs are furthermore conceived with demonstrated suitability for the verification of 
OOAs up to the sixth. Each MS is as well utilized to discuss salient aspects useful to the code verification 
methodology such as the relative qualities of the most useful norms in measuring the discretization error, 
the sensitivity analysis of the verification process to forcing function terms, the relation between residual 
minimization and discretization error convergence in iterative solutions and finally the sensitivity of high-
order discretizations to grid stretching and self-similarity. Furthermore, scripts and code are provided 
as accompanying material to assist the interested reader in reproducing the verification results of each 
manufactured solution (MS).

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Code verification is a crucial step prior to the application of a 
scientific simulation software to the solution of practical problems 
as it aims at examining the soundness of the implementation of 
the governing equations in the numerical framework. With the in-
creasing interest of the research community in the design and ap-
plication of high-order-of-accuracy discretization methods for CFD 
problems, there is an imperative need to extend the verification 
methodology to this class of methods. Code verification is in fact 
even more critical for higher-order methods since it is the only 
means to provide assurance that the effort invested in their de-
sign and development is justified by the delivery of the expected 
higher performance in terms of accuracy per computational effort. 
We hence present in this paper the fundamental aspects towards a 
comprehensive code verification methodology for CFD solvers with 
all orders of accuracy.

To carry out the demonstration of the methodology and with-
out loss of generality, we choose the numerical framework com-
posed of the compressible RANS equations closed by the original 
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and negative versions of the Spalart-Allmaras (SA) model of tur-
bulence [1] and discretized by the correction procedure via flux 
reconstruction (CPR) scheme [2].

The article is structured as this: in Section 1, the context and 
contributions of this work are introduced, followed by a compre-
hensive presentation of the theoretical background in verification 
and validation (V&V) in Section 2. The governing equations as well 
as the compact high-order numerical method are respectively ex-
hibited in Sections 3 and 4, including a precise description of 
all the employed boundary conditions. The application results of 
the verification and the discussion of the salient aspects of the 
methodology appear in Section 5 and the article ends with conclu-
sions in the last Section.

1.1. Contributions

A series of trigonometric manufactured solutions for the se-
quential verification of high-order RANS solvers is devised such 
that it demonstrably achieves all OOAs up to the sixth order on 
moderately fine isotropic grids, without being trivially reached on 
the coarsest ones. Attention is invested in ensuring that the MSs 
produce a fair balance between different terms of the governing 
equations. The sequence of MSs targets constitutive components 
of solvers in an isolated fashion and with incremental complexity 

https://doi.org/10.1016/j.ast.2018.07.006
1270-9638/© 2018 Elsevier Masson SAS. All rights reserved.

https://doi.org/10.1016/j.ast.2018.07.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
mailto:farshad.navah@mail.mcgill.ca
https://doi.org/10.1016/j.ast.2018.07.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2018.07.006&domain=pdf


102 F. Navah, S. Nadarajah / Aerospace Science and Technology 80 (2018) 101–126

such that systematic debugging is enabled and gathering cumula-
tive evidence on the soundness of high-order CFD solver imple-
mentation is made possible. The MSs serve thus to examine the 
implementation of Euler, Navier–Stokes (NS) and RANS equations 
along with the original and also with the negative SA model, for 
free flows, i.e., flows that are not bounded by walls. The set of MSs 
is as well employed to explore the following concepts:

• The comparative description of different norms and a demon-
stration of the importance of L∞ norm in code verification;

• The need for the inclusion of a relatively high order of accu-
racy in code verification;

• The significance of the balancing of forcing function terms of 
the MMS and the sensitivity analysis of the verification process 
to terms with the lowest magnitude in the forcing functions;

• The verification of both the original and the negative SA mod-
els of turbulence;

• The relation of residual convergence level with regards to dis-
cretization error magnitude and insight on the necessary level 
of residual convergence;

• The examination of the treatment of non-affine mapping of 
curved elements;

• The effect of grid self-similarity and stretching on grid conver-
gence of solutions with smooth gradients.

Accompanying IPython [3] notebook and C routine (available at 
[4]) facilitate the application of the described verification method-
ology through the reproduction of the manufactured fields and 
forcing functions of the presented MSs.

2. Theoretical background

In this section, first the terminology involved in V&V is com-
pleted and defined further, the MMS is formalized then and finally, 
a short review of the previous works with a focus on verification 
via the MMS in CFD is presented.

2.1. Terminology in V&V

Fig. 1 illustrates the relation between major concepts of interest 
under the three themes of simulation process, error sources, as well 
as verification and validation.

As a scientific simulation process takes place, errors from var-
ious sources slip into its different steps, contaminating incremen-
tally the outcome of the process. Abstractly, as the reality that we 
aim to capture cascades through a simulation, it diminishes at each 
step of the process. The role of V&V is hence to ensure that the 
amount of original reality captured by the simulation is sufficient 
for the purpose that the simulation is meant to serve, by ideally 
providing a dependable measurement of the discrepancies. In what 
follows, we describe more precisely these ideas with reference to 
Fig. 1.

Any scientific simulation process starts from a reality, a physical 
phenomenon that it aims at reproducing. Based on experimental 
data and previous theoretical knowledge, the relation between var-
ious quantities playing a role in the physical process is described 
by a conceptual model, i.e., a series of mathematical equations such 
as the partial differentials equations (PDEs) of Euler, NS or those of 
RANS-based turbulence models. Almost in all cases, these models 
are a mere, yet hopefully reliable, approximation of the inherent 
complexity of physics and as such they contain a modeling error. In 
this regard, model validation questions how well the phenomenon 
of interest is approached by the conceptual model. For complex 
problems such as those encountered in CFD, this is however only 
considerable once the simulation process has ended and a numer-
ical solution is available. In order to solve the conceptual model, 

Fig. 1. Verification and validation in relation to sources of error in a scientific simu-
lation.

a numerical algorithm, a scheme, is often needed. The applica-
tion of this numerical recipe to the conceptual model yields a 
numerical model such as the discretization of the RANS-SA system 
of PDEs by the CPR scheme. As the size of the discrete problem 
is increased for well-posed and smooth solutions, the solution of 
a numerical model is expected to tend towards that of the con-
ceptual model with a rate known as the formal order of accuracy. 
A numerical model with suitable properties such as stability and 
efficiency is translated to a computer code. Considering the com-
plexity of the numerical model, programming errors often occur at 
this step. Indeed, according to an exhaustive analysis of the quality 
of scientific computing codes: “There were about 8 serious static 
faults per 1000 lines of executable lines in C, and about 12 seri-
ous faults per 1000 lines in Fortran” [5]. Code verification has for 
purpose to identify and eliminate the mistakes affecting the cor-
respondence between the scientific software and the conceptual 
model via the formal order of accuracy. Similarly to model valida-
tion, code verification relies on the numerical solution of specific 
problems. To solve a given problem, the spatial and temporal do-
mains are discretized by a set of points, called degrees of freedom
(DOFs), to which the discrete solution is associated. The discretiza-
tion error is the difference between the continuous and discrete 
solutions and the solution verification is the estimation of this error 
for a given solution. The solution process refers to the minimization 
of discrete residual equations by iterative methods, mandatory for 
tackling non-linear systems, and by algorithms handling linear al-
gebraic systems. The truncation of real values for representation 
on computer architectures, by double precision types for exam-
ple, introduces a round-off error that affects the numerical solution 
by propagating through the discrete equations. On the other hand, 
a lack of sufficient minimization of the discrete residual equations 
results in an iterative convergence error that imposes a gap between 
the achieved numerical solution and the actual solution of the dis-
crete problem. Both the round-off and iterative convergence errors 
need to be controlled during the solution process to ensure that 
these sources of error are minimized such that the discretization 
error is isolated as the major source of numerical error. This condi-
tion enables code and solution verifications to be carried out since 
they operate only on the discretization error and its rate of reduc-
tion for increasing DOFs.

2.1.1. Code verification methods
The evaluation of OOAs in code verification requires the knowl-

edge of the exact solution which could be provided by devising a 
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