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The current manuscript presents the longitudinal and lateral directional online parameter estimation of 
two unmanned aerial vehicles (UAVs) using sequential Least Squares formulation in frequency domain. 
The two fixed wing UAVs share a similar cropped delta planform and differ in their cross sectional 
geometries, one with a rectangular and the other being a reflex airfoil cross sections respectively. 
Recursive Fourier Transform algorithm has been used to convert the flight data in time domain to 
frequency domain which is measured by means of a dedicated on-board data acquisition system capable 
of on-board logging and telemetry to ground station. The combination of Sequential Least Squares with 
Recursive Fourier Transform (SLS-RFT) in frequency domain can be used to carry out online parameter 
estimation. An attempt has been made to check the applicability of the current method to estimate 
parameters from the generated flight data of the two UAVs using both conventional as well as random 
control inputs. Results showed that the parameters estimated, using SLS-RFT, from the linear flight 
data are consistent and in close agreement with the obtained parameters from full scale wind tunnel 
testing of UAVs. It was also observed that the estimates from the manoeuvres with multistep control 
inputs converged faster compared to the parameters obtained from the manoeuvres with slow varying 
control surface deflections. The time varying linear aerodynamic parametric model of SLS-RFT was able 
to capture the dynamics of the flights with nonlinear aerodynamics. Certain limitations of the current 
online system identification method were also observed with estimating parameters from the flight data 
of UAVs performing near stall manoeuvres. The estimated parameters using SLS-RFT are also compared 
with the results obtained from batch methods namely classical Maximum Likelihood (ML) and neural 
based Neural–Gauss–Newton (NGN) methods.

© 2018 Elsevier Masson SAS. All rights reserved.

Introduction

In the era of computer automation and smart technology, Un-
manned Aerial vehicles (UAVs) became a salient trait of modern 
defence. Personnel safety, cost effectiveness and ease of operation 
have made the UAVs to take the driving seat in military to perform 
“dull, dirty and dangerous” jobs [1]. Home land security, surveillance, 
national defence, disaster response, remote sensing, law enforce-
ment, intelligence and reconnaissance are some of their major 
applications in military. UAVs also find various applications in civil-
ian as well as business sectors. Although UAVs are widely used 
for military applications, one issue of the major concern is their 
performance in fragile atmospheric conditions. Since most of the 
missions for UAVs demand its flight to be out of sight, the accuracy 

* Corresponding author.
E-mail address: yoonsoo@gnu.ac.kr (Y. Kim).

of the on-board controller plays a major role in successful accom-
plishment of the mission. The efficiency of modern controllers, that 
are used to deploy UAVs, directly depends upon the aerodynamic 
behaviour of the flight vehicle. Moreover, the flight velocities of 
UAVs are relatively low and the aerodynamics is highly vulnerable 
to atmospheric disturbances. A robust controller can address these 
issues by adapting to the changing atmospheric conditions as well 
as flight regimes [2]. In this case, online system identification can 
be used as an input to the controller which enables it to adapt for 
the aforementioned circumstances.

System identification process, for an aircraft, consists of quan-
tifying the unknown aerodynamic parameters that are present in 
a given aerodynamic model [3]. While using offline/batch estima-
tion methods it is assumed that the aerodynamic model is constant 
throughout the process, which limits the estimated aerodynamic 
parameters for a particular flight regime. In contrast, online sys-
tem identification technique considers a linear aerodynamic model 
with time varying parameters. The linear aerodynamic model at 

https://doi.org/10.1016/j.ast.2018.07.008
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Nomenclature

ax, ay, az Accelerations along x-, y- and z-body axes . . . . m/s2

b Span of the aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
c Mean aerodynamic chord. . . . . . . . . . . . . . . . . . . . . . . . . . . . m
CL, C D , Cm Longitudinal aerodynamic force and moment coef-

ficients
C y, Cl, Cn Lateral directional aerodynamic force and moment 

coefficients
CL0 , C D0 , Cm0 Longitudinal force and moment coefficients at 

zero angle of attack
C y0 , Cl0 , Cn0 Lateral directional force and moment coefficients 

at zero sideslip angle
CLα , C Dα , Cmα Derivatives of longitudinal force and moment 

coefficients w.r.t angle of attack
C yβ , Clβ , Cnβ Derivatives of lateral directional force and mo-

ment coefficients w.r.t sideslip angle
CLq , C Dq , Cmq Derivatives of longitudinal force and moment 

coefficients w.r.t pith rate
C yp , Clp , Cnp Derivatives of lateral directional force and mo-

ment coefficients w.r.t roll rate
C yr , Clr , Cnr Derivatives of lateral directional force and mo-

ment coefficients w.r.t yaw rate
CLδe

, C Dδe
, Cmδe

Derivatives of longitudinal force and moment 
coefficients w.r.t elevator deflection

C yδa
, Clδa

, Cnδa
Derivatives of lateral directional force and mo-

ment coefficients w.r.t aileron deflection
C yδr

, Clδr
, Cnδr

Derivatives of lateral directional force and mo-
ment coefficients w.r.t rudder deflection

g Acceleration due to gravity . . . . . . . . . . . . . . . . . . . . . . . m/s2

Ix, I y, Iz Moment of inertia about x, y and z body axis 
respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m2

J Cost function
m Aircraft mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
p, q, r Roll, pitch and yaw rates respectively . . . . . . . . . . . . rad/s
S Wing planform area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

u, v, w Airspeed components along x, y and z axis of aircraft 
respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s

V Airspeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
α Angle-of-attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . deg
β Angle of sideslip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . deg
δa, δe, δr Aileron, elevator and rudder deflection angles . . . deg
φ, θ,ψ Angles of roll, pitch and yaw . . . . . . . . . . . . . . . . . . . . . . deg
ρ Air density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

Θ Vectors of unknown parameters
ω Frequency of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad/s

Subscript

m Measured quantity

Superscripts
. Derivative with respect to time
∼ Flight data in frequency domain
† Conjugate transpose

each sample time is estimated by using a recursive formulation of 
ordinary least squares in frequency domain [4]. This recursive na-
ture enables the algorithm to store the information from previous 
data and avoids reprocessing of old data which makes the proce-
dure efficient for real-time operations. Since this algorithm applies 
for the frequencies where the system dynamics is involved, the 
wide band noise is automatically filtered out.

In the recent decade, due to the advancement of micro con-
troller based on-board processors have facilitated greater onboard 
computational power and also enabled many researchers to ad-
vance further in the field of parameter estimation of small and mi-
cro UAVs. Suk et al. have used a constrained parameter optimiza-
tion algorithm to estimate aerodynamic parameters from the flight 
tests of a conventional fixed wing UAV [5]. Chowdhary and Jate-
gaonkar have compared the performance of Extended Kalman filter 
(EKF), simplified and augmented versions of Unscented Kalman Fil-
ter (UKF) methods in estimating the parameters from the flight 
data, in time domain, of fixed wing aircraft (HFB-320) and a rotary 
wing UAV (ARTIS) [6]. Condomines et al. have used UKF to esti-
mate the wind field, subsequently the aerodynamic parameters; 
of a small scale glider UAV (Solius glider) [7]. Meng et al. have
extended the application of iterated EKF to estimate the parame-
ters from the simulated nonlinear flight data of a small fixed wing 
UAV [8]. Padayachee has used the regression analysis and maxi-
mum likelihood method to perform aerodynamic model identifica-
tion, from flight data, of a twin boom electrically powered fixed 
wing UAV [9]. Chase and McDonald demonstrated the estimation 
of longitudinal aerodynamic force coefficients, from the flight tests 
of fixed wing UAV, using Least Squares and Kalman Filter regres-
sion models [10]. Hoffer et al. have used Recursive Least Squares 
(RLS) algorithm with the error filtering online learning scheme 
to develop the aerodynamic model of a low-cost-fixed-wing T-tail 
UAV [11]. Morelli has performed the real time parameter estima-
tion in the frequency domain of F-18 high alpha research aircraft 

with recursive least square formulation [12]. Morelli has also ex-
tended the real time system identification to identify the linear 
dynamic models of F15 ACTIVE aircraft with multiple control sur-
faces [13]. Park et al. have used real time system identification to 
figure out the fault in the control surface of DURUMI-II UAV from 
flight tests [14]. Ruschmann et al. have carried out the identifica-
tion of structural damage scenarios of a generic transport model 
using modified sequential least squares formulation [15]. Jameson 
and Cooke have used least squares formulation in frequency do-
main to carry out the online parameter estimation of Jetstream-31 
aircraft in the absence of flow angularity sensors [16]. Song et al. 
have used recursive Fourier transform to perform online param-
eter identification from NASA F/A-18 Harv flight data [17]. From 
the aforementioned literature it is observed that the majority of 
research on system identification of UAVs was carried out using 
post processing methods. It is also noted that the real time system 
identification was performed using the flight data, from limited 
flight regimes, of manned aircraft. In order to use the online sys-
tem identification as an input for real-time reconfigurable control, 
the method needs to be verified over various/exhaustive flight en-
velopes which also include distress conditions. These adverse con-
ditions may include uncontrolled pre and post stall flight, aircraft 
undergoing icing conditions, control surface failures and sensors 
malfunctioning etc. to name a few. Generating such flight data us-
ing manned aircraft is highly challenging as well as safety concern. 
Instead of manned aircraft UAVs can be accommodated to over-
come the aforementioned limitations.

Unlike the previous works mainly focusing on system identi-
fication using post-processing or batch methods for a fixed aero-
dynamic model, the present research work is aimed at online 
parameter estimation of a time-varying aerodynamic model from 
real-time flight data using sequential least squares formulation in 
frequency domain. For this purpose, two UAVs with cropped delta 
planform have been designed, fabricated, instrumented and flight 
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