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Many carriers in aerospace applications require high-precision strapdown inertial navigation system 
(SINS) for navigation. Under complex motion such as maneuver, vibration, etc., the performance of SINS 
algorithm needs to be paid special attention, since additional algorithm error can be induced due to 
complex motion. In order to improve the performance of SINS attitude algorithm, a bilateral coning 
algorithm is presented, which is based on a bilateral correction structure containing only one vector 
cross-product of which the undetermined coefficient is on both sides. In order to design the bilateral 
coning algorithm, the classical compressed algorithm coefficient is first given. Then the constraint 
relationship between the bilateral correction coefficient and the uncompressed correction coefficient is 
constructed. Further, it is shown that how to design the bilateral correction coefficient according to the 
constraint relationship. (The maneuver residual error based on the uncompressed correction structure is 
derived in Appendix A.) After the full analysis and simulation, the bilateral coning algorithm is verified 
to be very efficient in maneuver environment, for it has low algorithm throughput close to that of the 
compressed algorithm and high maneuver accuracy close to that of the uncompressed algorithm.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

At present, the inertial navigation technology as a fully au-
tonomous navigation mode has been widely used in modern avi-
ation [1], spaceflight [2], navigation and other fields, for carrier 
navigation [1–3], guidance [4] and control [5], etc. Generally, the 
precision of strapdown inertial navigation system (SINS) is mainly 
determined by device precision [6,7], initial system error [8–10]
and algorithm accuracy. In complex environments such as ma-
neuvering, vibrating and other environments, the error (caused 
by complex motion) of the algorithm used for the computation 
of carrier attitude, velocity or position will be prominent in high 
precision SINS.

The attitude calculation structure used for the modern SINS has 
not changed, since Jordan [11] and Bortz [12] introduced the two-
stage structure [13] in which the calculation of equivalent rotation 
vector [14] is as the key point of attitude noncommutativity error 
compensation [13–24] (commonly referred to as coning correction 
now). The essence of coning correction is to approximate numeri-
cally the noncommutativity error from gyro data. To make coning 
correction as efficient as possible, two developing paths have been 
used for decades: one is to design a new coning correction struc-
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ture instead of the existing coning correction structures, then to 
design the coefficients depending on the new structure; the other 
is to introduce a new approach to design the coefficients depend-
ing on an existing coning correction structure. The original coning 
correction structure is the uncompressed correction structure [15]
developed from a two-sample correction structure earliest pre-
sented by Jordan [11]. All uncompressed coning algorithms as pre-
sented in [15–19] are based on the uncompressed correction struc-
ture. In order to improve the coning correction efficiency, Ignagni 
[20] proposed the compressed correction structure [15] which was 
simplified from the uncompressed correction structure based on 
the coning property that the cross-product of both angular incre-
ment samples is merely a function of the time interval between 
the two samples in the pure coning environment. All compressed 
coning algorithms as presented in [13,20,21] are based on the 
compressed correction structure. In order to take into account the 
algorithm performance and efficiency in maneuver environments, 
Tang et al. [22] proposed the half-compressed correction structure. 
In addition, Wang et al. [23] presented a high-order correction 
structure used for compensating the triple-cross-product term of 
attitude noncommutativity error. In all uncompressed coning algo-
rithms and compressed coning algorithms, the coning algorithms 
proposed by Miller [16], Savage [13] and Song et al. [15] are rep-
resentative.

The problem with traditional coning algorithms is that the 
traditional compressed algorithm [13,20] has low maneuvering 
accuracy, while the uncompressed algorithm [15] and the half-
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compressed algorithm [22] have high throughput and low effi-
ciency. In order to achieve both high accuracy and high efficiency 
of coning algorithm for complex environments, the authors of this 
paper concentrate on designing a new coning correction structure, 
and then designing a class of efficient coning algorithms for atti-
tude computation. The new correction structure, denoted here as 
the bilateral correction structure where there is only one vector 
cross-product like that of the compressed correction structure, can 
be derived from the classical uncompressed correction structure 
based on some constraint condition. In order to design a class of 
coning algorithms based on the bilateral correction structure, the 
coefficients depending on the uncompressed correction structure 
need to be first designed under the constraint condition mentioned 
above. Then the coefficients depending on the bilateral correction 
structure can be calculated from the uncompressed coefficients of 
the last design based on the given constraint condition. It finally 
gives the new class of coning algorithms based on the bilateral 
correction structure. The new coning algorithm has been fully an-
alyzed and simulated.

2. Coning algorithms basic

2.1. Coning correction structure

The rotation vector differential equation was introduced into in-
ertial navigation by Bortz [14] as follows

φ̇ = ω + δφ̇,

δφ̇ = 1

2
φ × ω + 1

φ2

(
1 − φ sinφ

2(1 − cosφ)

)
φ × (φ × ω) (1)

where φ is an equivalent rotation vector representing an orienta-
tion or rotation of body, φ̇ is the derivative of φ to time, φ is the 
module of φ, ω is an angular rate vector of body, and δφ̇ is a non-
commutativity rate vector.

For the SINS attitude updating, the equivalent rotation vector is 
generally calculated using a simple approximate form to the inte-
gral of the rotation vector differential equation. A common single-
speed form [11–14] is as follows:

φl = αl + δφl,

αl =
tl∫

tl−1

ωdτ ,

δφl = 1

2

tl∫
tl−1

α × ωdτ ,

α =
t∫

tl−1

ωdτ (2)

where l denotes the attitude updating cycle, t is a time, tl−1 and tl
are respectively the beginning time and the ending time of the lth 
cycle, φl is the rotation vector equivalent to the attitude change 
over the lth cycle, α is the integral of ω from time tl−1 to time 
t , αl is the integral of ω from time tl−1 to time tl , and δφl is an 
approximate integral of δφ̇ over the lth cycle, which denotes here 
the analytical form of coning correction.

In the implementation process of SINS attitude updating, φl is 
generally approximated using a numerical method. Furtherly, αl is 
generally achieved by accumulating gyro output, and δφl is gener-
ally approximated from gyro output using a numerical form. The 
forms [13,15,20,22] for calculating φl with three existing coning 
correction structures for calculating δφl are as follows:

Table 1
FTSc algorithm coefficients.

L N C1 C2 C3 C4

1 4 113/840 −26/840 3/840
2 4 323/420 −26/420 3/420
3 4 393/280 114/280 3/280
4 4 214/105 92/105 54/105
1 5 367/2520 −106/2520 21/2520 −2/2520
2 5 997/1260 −106/1260 21/1260 −2/1260
3 5 1207/840 314/840 21/840 −2/840
4 5 656/315 262/315 168/315 −1/315
5 5 1375/504 650/504 525/504 250/504

φl = α̂l + δφ̂l (3)

α̂l =
N∑

k=N−L+1

�αk (4)

δφ̂l =
N−1∑
i=1

N∑
j=i+1

ςi j�αi × �α j (5)

δφ̂l =
N−1∑
s=1

Cs�αN−s × �αN , Cs =
N∑

i=s+1

ςi−s,i (6)

δφ̂l =
N−1∑
s=1

Isθ s × �αs+1, θ s =
s∑

k=1

�αk (7)

where Eq. (5), Eq. (6), and Eq. (7) are respectively called the un-
compressed coning correction structure, the compressed coning 
correction structure, and the half-compressed coning correction 
structure, α̂l is a numerical implementation of αl from gyro out-
put, δφ̂l denotes the numerical form of coning correction which 
is a numerical approximation to δφl , each �α is an angular in-
crement (the integral of gyro sensed angular rate) sample over 
a fixed time interval Tk , the �αs are adjacent and spaced se-
quentially forward in time, �αN−L+1 begins at time tl−1, �αN
ends at time tl , θ s is the angular increment over the time inter-
val [tl − NTk, tl − (N − s)Tk] where Tk is the sample time interval, 
ς s, Cs, and Is are respectively the coefficients depending on the 
uncompressed structure of Eq. (5), the compressed structure of 
Eq. (6), and the half-compressed structure of Eq. (7), L is the num-
ber of angular increment sample selected to compute α̂l in cycle l, 
N is the number of angular increment sample selected to compute 
δφ̂l in cycle l.

2.2. Coning algorithm coefficients

For the design and evaluation of algorithms, the coefficients of 
several existing coning algorithms are directly given below. Any set 
of coefficients combined with the corresponding algorithm struc-
ture indicates some coning algorithm.

In Table 1 are the coefficients of the compressed algorithm de-
signed using the frequency Taylor series method [20,21] (denoted 
as the FTSc method). In Table 2 are the coefficients of the com-
pressed algorithm designed using the least minimum square [13]
(denoted as the LMSc method). (Here Φ̇(Ω) is set to 1 when Ω is 
from 0 Hz to 100 Hz, and Φ̇(Ω) is set to 0 when Ω is greater than 
100 Hz.) The compressed algorithms based on the compressed 
structure of Eq. (6) with the coefficients in Tables 1 and 2 are one 
of the basic coning algorithms, and will be used for the design of 
the new coning algorithm.

In Table 3 are the coefficients of the uncompressed algorithm 
designed using the Song et al. [15] method (denoted as the FTSuc 
method) from a part of the FTSc coefficients in Table 1. In Table 4
are the coefficients of the uncompressed algorithm designed us-
ing the Song et al. [15] method (denoted as the LMSuc method) 
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