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A new indirect resolution method of an optimal control problem is proposed in this paper. And the 
optimization of the spacecraft low-thrust rendezvous with the fuel-minimum index to a safe region under 
the collision avoidance constraints is investigated. The objective is to minimize the fuel consumption 
in a power-limited low-thrust system, which leads to a bounded continuous control. The number of 
thrust arcs is unknown and the terminal positions in the rendezvous’ safe region are unfixed for this 
optimization problem. The indirect resolution method of the optimal control employs deterministic 
interval analysis and gradient-based method to obtain the initial guess of the co-state variables. The 
interval analysis is used to sufficiently split, contract and clip the initial search space. And the gradient-
based method is to determine the initial guess for each remained sub-space. Aiming at a low-thrust 
control system with the upper bound of acceleration of 5e−4 m/s2, numerical results are given to validate 
the proposed optimization method.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Electric propulsion system (EPS) for space missions has been 
well recognized [1] and successfully demonstrated in the mis-
sion of Deep Space 1 [2]. Due to high specific impulse, it pro-
duces low thrust, greatly decreasing the initial spacecraft mass. 
Therefore the Earth orbital transfer [3], rendezvous [4] and even 
future interplanetary missions using EPS can be accomplished ef-
ficiently. As a key technology, the optimizations of the low-thrust 
trajectory with large number of control arcs have been researched 
[5–10]. The control arc can be in the form of general continuous 
curve with the bound lower than the system’s upper bound, i.e. 
the unbounded continuous low-thrust control [5,7]. Or it is the 
continuous approximate-square-wave with its bound equal to the 
system’s upper bound, i.e. the bounded continuous low-thrust con-
trol [6]. The main resolution methods of the low-thrust trajectory 
optimization involve direct and indirect methods [11,12]. Direct 
methods solve an optimization problem via parameter discretiza-
tion, parameter collocation and sequential quadratic programming 
[13]. The main disadvantage of direct methods for the low-thrust 
trajectory optimization is that the number of discretized parameter 
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can be sufficiently large, which is improper for the low-thrust tra-
jectory optimization. Indirect methods obtain the optimal solution 
of a problem via Hamiltonian boundary value problem (HBVP) and 
Pontryagin’s maximum principle (PMP) [14]. The structures of all 
the control arcs satisfy the first-order optimality condition without 
any extra assumptions. And thus it is suitable for the low-thrust 
trajectory optimization. Nevertheless, a major drawback of indirect 
methods is the heavy reliance on a good initial guess and diffi-
culty in optimizing the problem with a small convergence radius 
and sensitive initial co-state variables.

The basic methods to obtain the initial guess of the co-state 
variables include random guess and particle swarm optimization 
(PSO) [7,15]. Aiming at the orbital transfers subjected to the Earth 
and Sun’s gravities [16,17], the control functions are unbounded 
continuous low-thrust control. The unbounded continuous low-
thrust control involving a large convergence radius has been dis-
cussed before. And thus the initial co-state variables of the opti-
mal low-thrust trajectories with energy-minimum index are easily 
yielded via these methods. However, it is difficult to yield the ini-
tial co-state variables of the optimal low-thrust trajectory control 
with fuel-minimum index via these methods. Because the con-
trol arc is square-ware with its bound equal to the upper bound 
of the low-thrust control system and the convergence radius is 
very small and the initial co-state variables are greatly sensitive. 
To solve this problem, a numerical continuation method named 
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homotopic approach is combined to cope with the initial guess 
of the low-thrust trajectory optimization [18]. Particularly, the ini-
tial co-state variables of the optimal low-thrust trajectory control 
with energy-minimum index are firstly determined via the basic 
methods. And then the initial co-state variables corresponding to 
the fuel-minimum index are obtained via the homotopic approach 
based on the solutions of this problem with energy-minimum in-
dex. Obviously, these low-thrust, fuel-minimum problems solved 
via basic methods or homotopic approach are completely relied 
on an easily solved energy-minimum problem (optimal control 
solutions less than allowed maximum). Therefore, homotopic ap-
proach is effective to deal with the low-thrust, fuel-minimum tra-
jectory optimization under the sufficient condition that the energy-
minimum problem is an unbounded control problem. Note: “Un-
bounded” means “not reach its boundary” in this paper.

As for the low-thrust rendezvous, the fuel-minimum index is 
a half of the integral of the square of the control parameter 
in a power-limited system during the whole control period [19]. 
The control is unbounded or bounded continuous like the opti-
mal control problem with energy-minimum index. Pardis derived 
the bounded low thrust trajectory with power-limited system [20]. 
Carter extended the work to the control system with upper and 
lower thrust bounds [21]. Guelman developed the power-limited 
unbounded or bounded thrust trajectories with the final constraint 
along the target-docking axis [6]. To satisfy the final constraint 
and obtain the optimal low-thrust trajectory, the fuel-minimum 
index is transformed into a fuel-state-optimal hybrid one. Conse-
quently, the optimal low-thrust trajectories corresponding to the 
two indexes can be different under rendezvous constraint. Actually, 
a chase spacecraft (CS) within a certain constrained safe region 
(close to or station on the target-docking axis) can accomplish the 
final docking to a target spacecraft (several tens of meters away 
from the CS), using several target feature points [22]. Besides, due 
to the non-ignorable size of the target spacecraft (TS), the collision 
issue must be avoided in the rendezvous. In the safe region under 
the collision avoidance constraints, the bounded, low-thrust opti-
mal rendezvous trajectory in power-limited system cannot be de-
termined easily via aforementioned methods, because the control 
function is continuous approximate-square-wave with the bound 
equal to the upper bound of the low-thrust control system. And 
the convergence radius is quite small and the initial co-state vari-
ables are sensitive. Additionally, the homotopic approach is inap-
propriate for this optimization problem, because the optimal con-
trol solutions of the easily solved energy-minimum problem can be 
regarded as a bounded continuous control when the fuel-minimum 
problem is a bounded continuous control. Therefore, it is impossi-
ble to obtain the initial guess of the fuel-minimum problem via 
any numerical continuation methods.

In this paper, to overcome these drawbacks, a deterministic 
method obtaining the initial values of co-state variables in the 
low-thrust optimization problem is developed based on the in-
terval analysis (IA) [23] and gradient-based method. Although it 
has been verified successfully only for the impulsive optimization 
of Lambert problem [24,25], it is essentially a deterministic opti-
mization method and can solve the optimization problem in any 
nonlinear dynamical systems theoretically. And it is more effective 
for optimization problems with many constraints [24]. Therefore, 
a new estimation of the initial values of co-state variables of the 
low-thrust optimization problem will be presented in detail in this 
paper. Interval analysis used to solve a dynamic optimization prob-
lem (along the time 0–t) will be a new attempt. This method 
enriches the investigations of indirect resolution methods in the 
optimal control theory. And it may be helpful for the low-thrust 
space missions from the engineering viewpoint.

Particularly, this paper is organized as follows. Firstly, a new de-
terministic optimization method is introduced based on the IA and 

gradient-based method. Then, the fuel-minimum low-thrust ren-
dezvous trajectory optimization with unfixed final position (reach-
ing safe region) and collision avoidance is presented in the power-
limited system. Subsequently, the low-thrust trajectory optimiza-
tion in spacecraft rendezvous using the deterministic optimization 
method is discussed. Finally, the numerical simulations are imple-
mented to validate the low-thrust trajectory optimization in space-
craft rendezvous with the fuel-minimum index.

2. Deterministic optimization using IA and gradient-based 
method

Combining with the branch and bound theory, the interval al-
gorithm is developed into a deterministic optimization method 
[26]. However, it is really used to cope with the discontinuous 
and non-convex optimization problems and obtain a global min-
imum solution by Chen and Ma to impulsive Lambert problems 
[24,25]. In this paper, an optimization algorithm based on IA and 
gradient-based method is developed to deal with the low-thrust 
optimal control problem that is an integral multi-variable opti-
mization problem.

2.1. IA

The optimization algorithm based on IA is a powerful tool to 
guarantee a global minimum solution to a nonlinear cost function. 
Firstly, given a large interval of each parameter of the nonlinear 
cost function, its interval outputs can be obtained by interval op-
erations, which establish a boundary around the optimal solution 
of the nonlinear cost function [27]. The interval value and interval 
arithmetic are described as follows:

The interval value is defined as a sequential pair of real num-
bers [x], which implies

[x] = [x, x̄] = {
x|x ≤ x ≤ x̄

}
(1)

where x is the lower boundary of the interval value [x], and x̄ is 
the upper one. Obviously, an interval value can be an interval ma-
trix (or an interval vector) shown as

[X] =
( [x11] [x12]

[x12] [x22]
)

(2)

where [x11], [x12], [x21] and [x22] are the interval values.
The interval arithmetic can be regarded as a generalization or 

an extension of the real arithmetic. Similar to real arithmetic, the 
interval arithmetic involves basic operations as addition, subtrac-
tion, multiplication and division⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[x] + [y] = [x, x̄] + [y, ȳ] = [x + y, x̄ + ȳ]
[x] − [y] = [x, x̄] − [y, ȳ] = [x − ȳ, x̄ − y]
[x] · [y] = [x, x̄] · [y, ȳ]

= [min(xy, xȳ, x̄y, x̄ ȳ),max(xy, xȳ, x̄y, x̄ ȳ)]
[x]/[y] = [x, x̄]/[y, ȳ] = [x, x̄] · [1/ ȳ,1/y] 0 /∈ [y]

(3)

The interval arithmetic also contains other operations, like 
trigonometric function, index function, function integration and 
differentiation, interval intersection etc. [19]. According to basic 
interval arithmetic, an interval function with interval variables 
[x1], . . . , [xn] can be expressed as

f
([x1], . . . , [xn]) = Ξ

([x1], . . . , [xn]) (4)

where Ξ indicates the interval arithmetic of the interval function 
f with interval variables [x1], . . . , [xn].

Although a nonlinear cost function can be expressed and dealt 
with by an interval function, the overestimation of the interval 
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