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This paper studies a problem in which a fleet of heterogeneous fixed-wing unmanned aerial vehicles 
(UAVs) must identify the optimal flyable trajectory to traverse over multiple targets and perform 
consecutive tasks. To obtain a fast and feasible solution, a coupled and distributed planning method 
is developed that integrates the task assignment and trajectory generation aspects of the problem. With 
specific constraints and a relaxed Dubins path, the cooperative mission-planning problem is reformulated. 
A distributed genetic algorithm is then proposed to search for the optimal solution, and chromosomal 
genes are modified to adapt to the heterogeneous characteristic of UAVs. Then, a fixed-wing UAV model 
with 6 degrees of freedom (DOF) and a path-following method is used to verify this proposed mission-
planning method. The simulation results show that the proposed approach obtains feasible solutions and 
significantly improves the operating rate, with the potential for use in a real mission.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

The increased use of unmanned aerial vehicles (UAVs) for 
complex missions has motivated the development of autonomous 
mission-planning methods that ensure the spatial and temporal 
coordination among teams of cooperating UAVs. These planning 
methods can be applied for teams of heterogeneous networked 
agents tasked with completing autonomous missions [1], such 
as reconnaissance, strike, and verification operations for terrorist 
plots. In such missions, the task coordination, task precedence, and 
flyable trajectories generation are three basic requirements for the 
mission-planning solution [2]. The complexity of this class of prob-
lem arises when the number of UAVs and mission tasks increases 
[3]; furthermore, the inherent coupling between the task assign-
ment and the trajectory generation prohibits a convergence to the 
global optimum.

Previous works have treated the two sub-problems separately 
and applied approaches that include mixed integer linear pro-
gramming [4,5], capacitated transhipment network solvers [3], tree 
searches [6], genetic algorithms [7–10], alternating algorithms [11], 
and two-point algorithms [12]. The main characteristic of this class 
of planning techniques is as follows: Given a feasible task allo-
cation, the problem is simplified to trajectory generation, which 
significantly reduces the complexity but may lead to poor solu-
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tions if the trajectories significantly vary from those assumed in 
the task assignment process.

Thus, Richards et al. [3] proposed a coupled solution; however, 
it uses Euclidean distances without obtaining the flyable trajecto-
ries. Another coupled method that merges Dubins trajectories with 
cooperative multiple task assignment problems (CMTAPs) to ob-
tain the flyable trajectories has been presented [13–15], and this 
method transforms the CMTAP into a directed graph by discretiz-
ing the possible heading angle of the vehicle over each target; 
however, an infinitesimal change in value of a heading can cause 
the overall length of the tour to jump to a higher value, and 
the adopted centralized genetic algorithm (CGA) cannot guaran-
tee convergence within an acceptable operation time. An updated 
method that integrates Dubins path costs into the task assign-
ment process has been shown to obtain a better solution in a 
single-UAV case [16,17], although it is not used in multiple UAV 
cases.

The GA can provide good approximated solutions for the CMTAP 
[7,18]. The process of a genetic algorithm can be significantly ac-
celerated by using a distribution technique, and a newly developed 
distributed genetic algorithm (DGA) has been shown to obtain the 
global optimal solution [19], which makes it practical for planning 
in a dynamic environment.

In this paper, the CMTAP is modified to cover the features of 
UAVs, targets, and tasks in the mission, such as the heterogene-
ity of the UAVs, limitations of onboard resources, threat circle of 
targets, task precedence, and task execution time. Without de-
coupling this pair of sub-problems, Dubins path cost is added to 
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Nomenclature

U set of all UAVs
Ur set of reconnaissance UAVs
Us set of strike UAVs
Uc set of combat UAVs
Nr total number of reconnaissance UAVs
Ns total number of strike UAVs
Nc total number of combat UAVs
Nu total number of UAVs
rr

det ect detection range of the reconnaissance UAV
rc

det ect detection range of the combat UAV
tr

r required execution time for the reconnaissance task
tc

r required execution time for the reconnaissance task
tr

v required execution time for the verification task
rr

lim it minimum turning radius of the reconnaissance UAV
rs

lim it minimum turning radius of the strike UAV
rc

lim it minimum turning radius of the combat UAV
Li maximum number of weapons on-board
T set of all targets
NT total number of targets
Td set of all targets that require double attacks
Ts set of all targets that require single attacks
NTask total number of tasks
mi quantity of tasks for target i
κi(t) curvature of UAV i at moment t
ϕter heading angle on the target
ϕmin,ϕmax minimum and maximum values of ϕter
rthreat radius of the threatening circle
(xi(t), yi(t),hi(t)) location of UAV i at the moment t on the 

North, East, Height inertial frame
(xi

t , yi
t) location of target i

tduration actual consumed time to execute the task
treq required task execution time

J cost function in Eq. (10)
xl,i, j binary decision variable
cl,i, j distance traveled by UAV i to execute task l on target 

j
Usur set of UAVs with the reconnaissance ability
Uatt set of UAVs with the attack ability
Uatt

ca set of available weapons
Natt total number of weapons
Np population quantity of chromosomes
Ne total number of chromosomes selected by the elitism 

process
Ncro total number of chromosomes generated by the 

crossover operator
Pmutation mutation probability
Ncp coordination period
Indexi quality index of the adoptive algorithm when the ith 

run is executed
Jbest, tbest minimum cost and minimum operation time for a 

single trial
α,β weight coefficient of the cost and operation time
J initialg average cost in the initial generation
J generation(i) average cost of the ith generation

Definitions, Acronyms and Abbreviations

UAV unmanned aerial vehicle
DOF degrees of freedom
DGA distributed genetic algorithm
CMTAP cooperative multiple task assignment problem
CGA centralized genetic algorithm
RSV reconnaissance, strike, verification
GTSP-GA general traveling salesperson problem with dis-

cretized heading angle by genetic algorithm

the CMTAP, and the DGA is then used to obtain the feasible solu-
tion within an acceptable operation time length, and the genes of 
the DGA are modified to adapt to the heterogeneous characteris-
tic of UAVs. From the perspective of an autonomous UAV guidance 
and control system, this method is tested on a fixed-wing UAV 
model with 6 degrees of freedom (DOF) using a path-following 
method.

2. Modified CMTAP with constraints

In this section, the coupled task assignment and trajectory gen-
eration problem for a fleet of heterogeneous UAVs is presented in 
the form of a modified CMTAP with constraints. The problem is 
considered for scenarios where a fleet of heterogeneous UAVs ex-
ecute sequential operations including reconnaissance, strike, and 
verification on several known targets. The modified CMTAP with 
constraints is an extensional work of Edison et al. [13] and Deng 
et al. [14].

2.1. Parameter definitions

2.1.1. UAVs
The inherent heterogeneity mainly arises from different types of 

UAVs. Three vehicle specialties are presented in this scenario: re-
connaissance UAVs, strike UAVs, and combat UAVs. Reconnaissance 
UAVs can perform all types of tasks except the strike task, strike 
UAVs can only perform the strike task, and combat UAVs can per-
form all types of tasks. Here, U = {Ur, Us, Uc} represents the set of 
all UAVs.

Reconnaissance UAV:
Let Ur = {ur

1, u
r
2, . . . , u

r
Nr } be the set of Nr reconnaissance UAVs, 

where r denotes the type of UAV.
To reveal the actual scenario, certain features of this type of 

UAV should be considered, such as the detection range of the on-
board sensor (represented by rdet ect), the necessary execution time 
for the reconnaissance task and verification task (represented by 
tr and tv , respectively), and the minimum turning radius (repre-
sented by rr

lim it ).

Strike UAV:
Let Us = {us

1, u
s
2, . . . , u

s
Ns } be the set of Ns strike UAVs, where s

denotes the type of UAV. In this scenario, Li denotes the limitation 
on the number of onboard weapons, with i ∈ {1, . . . , Ns}; and rs

lim it
denotes the minimum turning radius of this UAV.

Combat UAV:
Let Uc = {uc

1, u
c
2, . . . , u

c
Nc } be the set of Nc combat UAVs, where 

c denotes the type of UAV. Similarly, the detection range of the on-
board sensor (represented by rc

det ect), the necessary execution time 
for the reconnaissance task and verification task (represented by 
tc

r and tc
v , respectively), and the minimum turning radius (repre-

sented by rc
lim it ) are presented.

The mobility of the three types of UAVs varies because of 
the different onboard resources. In general, rr

lim it = rc
lim it > rs

lim it , 
which shows that the strike UAV has better mobility without on-
board sensors. Nu = ‖U‖ = Nr + Ns + Nc is the total number of 
UAVs.

For simplicity, we assume that the UAVs can maintain flight 
level during the mission, and the involved UAVs have collision free 
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