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Modeling and dynamics of a bare tape-shaped tethered satellite system
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This paper focuses on the rigid-flexible coupling modeling and dynamics of a bare tape-shaped Tethered 
Satellite System (TSS). The rigid element is adopted to discretize the tape-shaped tether into a system of 
rigid bodies with equivalent linear springs and dampers serving as the junctions between the adjacent 
rigid elements. The equations of motion of the rigid elements are obtained using Newton’s second law 
and the theory of angular momentum. Further, the influence of environmental perturbations on the 
dynamics of the tape-shaped TSS is investigated, including the atmospheric drag, electrodynamic force, 
and heating impact. The simulation results show that complicated dynamic phenomena for attitude 
motions and tether configuration changes will be observed in the tape-shaped bare tethered satellite 
system.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

A bare thin-cylindrical or tape-shaped tether in space, based 
on the orbital-motion-limit (OML) theory, can collect electrons [1]. 
The use of a bare tape-shaped tether to connect two satellites has 
drawn considerable attention in the past decade [2,3]. Intensive 
studies have been made on the survivability of tape-shaped tethers 
in space [4–8], and on the design and experiment of tape-shaped 
tether deployment systems [9–11]. For instance, a reinforced alu-
minum tether with a width of 25 mm and thickness of 50 μm was 
successfully deployed to 132.6 m in the Tether Rocket Experiment 
(T-Rex) [12,13].

In the above design for the experiments of tape tether system, 
the bending and torque of the tape tether were ignored [14] and 
a rigid-rod model was adopted [15]. Clearly, the dynamical model 
of a tape-shaped tethered system is different from that of a con-
ventional string-tethered system because of the inevitable bending 
and torque arising from the tape-shaped tether [16]. The numer-
ical and experimental results have been used to predict bending 
and torsion vibrations in a tape-shaped aluminum tether with a 
length of 1 m [17]. Additionally, the electrodynamic force that oc-
curs in a bare tether is closely coupled with the flexural deflection 
of the tether [18]. In other words, a tape-shaped electrodynamic 
tether (EDT) has more design redundancy in rigidities than a string 
tether. This paper presents rigid-flexible coupling modeling of a 
tape-shaped TSS based on discretized rigid elements, with equiva-

* Corresponding author.
E-mail addresses: yu_bensong@nuaa.edu.cn (B.S. Yu), daipengbin621@163.com

(P.B. Dai), jindp@nuaa.edu.cn (D.P. Jin).

lent linear springs and dampers serving as the junctions between 
the rigid elements and then studies the dynamic responses of the 
system under environmental perturbations, such as atmospheric 
drag, the heating effect, and electrodynamic force.

The organization of this paper is as follows. The equations of 
motion of a tape-shaped tethered satellite system discretized by 
rigid elements with junctions are established in Section 2, and 
the equivalent rigidities of the junctions are presented in Sec-
tion 3. The environmental perturbations, such as the heating effect 
and electrodynamic force, are given in Section 4. The dynamic re-
sponses of the system are investigated numerically in Section 5. Fi-
nally, the numerical simulation results are concluded in Section 6.

2. Modeling of tape-shaped tethered satellite

As shown in Fig. 1, an on-orbit TSS during the station-keeping 
phase is orbiting the Earth, with O E being the center of the Earth. 
A taped-shaped tether connects the mother spacecraft M and the 
satellite S . The mass of the mother spacecraft is much larger than 
the mass of the satellite, i.e., mM >> mS . The length, width, and 
thickness of the tape tether are L, dw , and dt , respectively, with 
dw >> dt . The mass density of the tape tether is ρL . The incli-
nation angle between the equatorial and orbital planes is δ. The 
in-plane pitch and out-of-plane roll angles of the system are θ

and ϕ , respectively, as shown in Fig. 1(b).
An Earth-centered inertial frame is denoted as O E –XE Y E Z E . 

The origin O E is at the center of the Earth; the XE -axis points in 
the direction of the ascending node, the Z E -axis is perpendicular 
to the orbital plane, and the Y E -axis completes the right-handed 
coordinate system. An orbital reference frame is denoted by o–xyz. 

https://doi.org/10.1016/j.ast.2018.05.046
1270-9638/© 2018 Elsevier Masson SAS. All rights reserved.
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Fig. 1. Description of the two-body TSS.

Fig. 2. Discretization of the tape-shaped tether.

The origin of this frame is located at the center of the mother 
spacecraft. The x-axis is in the opposite direction of the motion 
of the mother spacecraft, the y-axis is along the line connecting 
O E to o, and the z-axis completes the right-handed system. In ad-
dition, a body reference frame o–xM yM zM is fixed to the mother 
spacecraft.

The tape tether is divided into n uniform rigid elements marked 
by i = 1, 2, . . . , n, as shown in Fig. 2. The mother spacecraft M and 
the satellite S are indicated by 0 and n +1, respectively. Similarly, a 
body reference frame oi –xi yi zi is fixed to the rigid element i with 
oi as the center of mass of the rigid element i. The junctions be-
tween the rigid elements are modeled as equivalent linear springs 
and dampers. It is obvious that such a system of rigid bodies is 
capable of characterizing the tape tether in dynamics if the num-
ber of rigid elements is large enough, and the junctions could be 
modeled correctly via the equivalent springs and dampers.

According to Newton’s second law, the translational motion of 
the ith rigid element is written as

mi r̈ci = G E
i + P i + R i, (1)

where the dot denotes the derivative with respect to time t . mi =
ρL L/n represents the mass of rigid element i, and rci represents 
the position vector of the center of mass of the rigid element i in 
O E –XE Y E Z E . The gravity model in O E –XE Y E Z E is [19]

G E
i = −μE

r2
ci

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
mi + 3

2r2
ci
[(3 J xi xi + J yi yi + J zi zi − 5Q − 10Q̃ )

+ 2
γxi

(γyi J xi yi + γzi J xi zi )]
}
γxi ii{

mi + 3
2r2

ci
[(3 J yi yi + J zi zi + J xi xi − 5Q − 10Q̃ )

+ 2
γyi

(γzi J yi zi + γxi J yi xi )]
}
γyi ji{

mi + 3
2r2

ci
[(3 J zi zi + J xi xi + J yi yi − 5Q − 10Q̃ )

+ 2
γzi

(γxi J zi xi + γyi J zi yi )]
}
γzi ki

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where μE = 3.9885 × 1014 m3/s2, Q = γ 2
xi

J xi xi +γ 2
yi

J yi yi +γ 2
zi

J zi zi , 
and Q̃ = γxi γyi J xi yi + γxi γzi J xi zi + γyi γzi J yi zi , where γxi , γyi , and 
γzi represent the direction cosine of rci in oi –xi yi zi , and J xi xi , 
J yi yi , J zi zi and J xi yi , J xi zi , J yi zi are the inertial moments and the 
products of inertia, respectively. ii , ji and ki are the unit vectors of 
the coordinate axes xi , yi and zi , respectively. P i is the resultant 
tension force on the rigid element i exerted by the two junctions, 
and R i is the resultant applied force. Note that the inertia matrix 
of the rigid element i in the fixed body frame oi –xi yi zi is given by

J i =
⎡
⎣ J xi xi J xi yi J xi zi

J yi xi J yi yi J yi zi

J zi xi J zi yi J zi zi

⎤
⎦ . (3)

Assume that a uniform atmospheric drag force acts on the rigid 
element i, i.e.,

Rd
i = −1

2
ρi C Di Ai vri |vri |, (4)

where ρi is the atmospheric density near rigid element i, C Di and 
Ai are the drag coefficient and the frontal area for the rigid el-
ement i, respectively, and vri is the relative velocity of the rigid 
element i with respect to the atmosphere. Note that the frontal 
area of a tape-shaped tether is much larger than that of a string 
tether.

According to the theory of angular momentum, the attitude 
equation of motion of rigid element i is

J i · ω̇i + ωi × ( J i · ωi) = M G
i + M Pi

i + Mb
i + Mt

i + M R
i , (5)

where J i = eT
i J iei represents the inertia tensor of the rigid ele-

ment i, ei is a basis vector of the body frame oi –xi yi zi , ωi is the 
angular velocity vector of rigid element i, and the principal gravity 
moment is

M G
i = 3μE

r3
ci

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

( J zi zi − J yi yi )γyi γzi + ( J xi zi γyi − J xi yi γzi )γxi

+ J yi zi (γ
2
yi

− γ 2
zi
)ii

( J xi xi − J zi zi )γzi γxi + ( J xi yi γzi − J yi zi γxi )γyi

+ J xi zi (γ
2
zi

− γ 2
xi
) ji

( J yi yi − J xi xi )γxi γyi + ( J yi zi γxi − J xi zi γyi )γzi

+ J xi yi (γ
2
xi

− γ 2
yi

)ki

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

Moreover, M Pi
i denotes the moment of force P i about the center 

of mass of rigid element i, Mb
i and Mt

i are the bending moment 
and the torque arising from junctions, respectively, and M R

i the 
resultant external moment acting on the center of mass oi of rigid 
element i.

In the discretized multi-body system, Equations (1) and (5) de-
termine the dynamics of the tape-shape tethered TSS.



Download English Version:

https://daneshyari.com/en/article/8057370

Download Persian Version:

https://daneshyari.com/article/8057370

Daneshyari.com

https://daneshyari.com/en/article/8057370
https://daneshyari.com/article/8057370
https://daneshyari.com

