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The failure-probability-based global sensitivity measure can detect the effect of input variables on the 
structural failure probability, which can provide useful information in reliability-based design. In this 
paper, a new efficient simulation method is proposed to estimate the failure-probability-based global 
sensitivity measure. The proposed method is based on the Bayes’ theorem and importance sampling 
Markov chain simulation. The Bayes’ theorem is used to provide a single-loop simulation method and 
the importance sampling Markov chain simulation is used to further reduce the computational cost. 
Compared to the traditional double-loop Monte Carlo simulation method, the proposed method requires 
only a single set of samples to estimate the failure-probability-based global sensitivity measure and its 
computational cost does not depend on the dimensionality of input variables. Finally, one numerical 
example and two engineering examples are presented to illustrate the accuracy and efficiency of the 
proposed method.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

In practical computational models for engineering structures, 
such as aeronautical engineering and civil engineering, uncertainty 
often arises from incomplete information [1–4], which leads to un-
certain performances. To quantify the uncertainty of the model 
output and assess the risk, uncertainty analysis has been success-
fully and widely used in engineering [5–8]. An important content 
of uncertainty analyses is the reliability analysis [9–13], whose pri-
mary objective is the estimation of the failure probability. The fail-
ure probability can represent how likely the failure occurs, which 
can help us understand the safety level of a structural system. In 
reliability-based design, it is desired to get the influence of system 
parameters on the failure probability. Then the most influential 
parameters can be obtained so that it can provide useful informa-
tion in risk-based decision making problems [14]. The reliability 
sensitivity analysis can help us measure the influence of system 
parameters on the failure probability [15]. In traditional reliabil-
ity sensitivity analysis, the sensitivity of the failure probability is 
often measured by estimating the partial derivative of the failure 
probability with respect to the distribution parameters of random 
input variables [14,16–20]. This can be considered as local sensitiv-
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ity analysis since it can only measure the effect of some statistical 
characteristics of input variables (such as mean and standard devi-
ation) on the failure probability at nominal values. Therefore, it 
cannot detect the global effect of input variables on the failure 
probability in their whole uncertainty ranges, and cannot provide 
a global importance ranking of input variables [21].

To measure the global effect of random input variables on the 
failure probability in their entire distribution ranges, the global 
sensitivity analysis (GSA) is required [22]. The existent GSA meth-
ods, such as screening method [23–25], variance-based method 
[26–30] and moment-independent method [31–34], mainly focus 
on the models with real-valued continuous output. However, in 
reliability analysis, we are more interested in whether the sys-
tem fails or not, which can be represented by the sign of model 
output. Then, the model output can be generally considered as a 
binary variable. Therefore, the GSA methods mentioned above can-
not be used in reliability analysis directly [35]. To measure the 
global effect of random input variables on the failure probability 
and provide a global importance ranking of input variables, Cui 
et al. [36] proposed a failure-probability-based global sensitivity 
measure. This sensitivity measure is analogous to the moment-
independent sensitivity measure proposed by Borgonovo [32], but 
it mainly focuses on the failure probability which is often related 
to the tail behavior of the distribution of model output. Compared 
to the traditional reliability sensitivity analysis which estimates 
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the partial derivative of the failure probability with respect to the 
distribution parameters of input variables, the failure-probability-
based global sensitivity analysis can measure the average effect of 
input variables on the failure probability in their entire distribution 
ranges.

The failure-probability-based global sensitivity measure is de-
fined as the average difference between the unconditional failure 
probability and the conditional failure probability when certain in-
put variables are fixed. It can reflect the average changes of the 
failure probability when the input variables are fixed. To esti-
mate this sensitivity measure, the traditional Monte Carlo simu-
lation (MCS) method requires a double-loop sampling procedure, 
in which the conditional failure probability requires to be calcu-
lated many times and the computational cost is dependent on the 
dimensionality of input variables. Therefore, this method is not ef-
ficient enough, especially for computational expensive and high 
dimensional problems.

In this work, we propose an efficient simulation method to 
calculate the failure-probability-based global sensitivity measure 
through Bayes’ theorem [37,38] and importance sampling Markov 
chain simulation [39]. Based on Bayes’ theorem, the original defini-
tion of the failure-probability-based global sensitivity measure can 
be represented as the area difference between the unconditional 
probability density function (PDF) and the failure-conditional PDF 
of input variable. Based on this representation, a new simulation 
method can be obtained, which requires only a single set of input 
samples. Then the importance sampling Markov chain simulation 
is utilized to further improve the computational efficiency. Com-
pared to the traditional double-loop MCS method, the proposed 
method is more efficient, even the computational cost does not 
depend on the dimensionality of input variables.

The rest of this work is organized as follows. Section 2 gives a 
brief review of the failure-probability-based global sensitivity mea-
sure. Section 3 presents the new computational method of the 
failure-probability-based global sensitivity measure. In section 4, 
several examples are presented to illustrate the accuracy and effi-
ciency of the new method. Section 5 gives the conclusions.

2. Review of the failure-probability-based global sensitivity 
measure

2.1. Definition of the failure-probability-based global sensitivity 
measure

Suppose the performance function of a structure can be repre-
sented as Y = G(X), where X = (X1, . . . , Xd) denotes the vector 
of random input variables with the joint probability density func-
tion (PDF) f X (x). The marginal PDF of Xi is denoted as f Xi (xi)(i =
1, . . . , d). When the input variables are independent with each 
other, f X (x) = ∏d

i=1 f Xi (xi). The failure probability P (F ) can be 
represented as

P (F ) = P
{

G(X) ≤ 0
} =

∫
I F (x) f X (x)dx = E X

[
I F (x)

]
, (1)

where I F (x) = 1 if G(x) ≤ 0 and I F (x) = 0 otherwise, E[·] is the 
expectation operator.

When input variable Xi is fixed at a certain value xi , the condi-
tional failure probability can be represented as

P (F |xi) = P
{

G(X) ≤ 0|xi
} =

∫
I F (x∼i, xi) f X∼i (x∼i)dx∼i

= E X∼i

[
I F (x∼i, xi)

]
,

(2)

where X∼i = (X1, . . . , Xi−1, Xi+1, . . . , Xd) denotes all the input 
variables except Xi and f X∼i (x∼i) is the joint PDF of X∼i . The 
effect of the fixed value xi of input variable Xi on the failure 

probability can be measured by the difference between P (F ) and 
P (F |xi), i.e.

s(xi) = ∣∣P (F ) − P (F |xi)
∣∣. (3)

It can be seen that s(xi) is a function only dependent on xi . Since 
xi is just a certain value of random input variable Xi with PDF 
f Xi (xi), the average effect of input variable Xi on the failure prob-
ability can be represented by the expectation of s(xi), i.e.

E Xi

[
s(xi)

] = E Xi

∣∣P (F ) − P (F |xi)
∣∣

=
∫
Xi

∣∣P (F ) − P (F |xi)
∣∣ f Xi (xi)dxi . (4)

In order to obtain a sensitivity measure lying between 0 and 1, 
Cui et al. [36] proposed a normalized failure-probability-based 
global sensitivity measure ηi for input variable Xi , i.e.

ηi = 1

2
E Xi

∣∣P (F ) − P (F |xi)
∣∣ = 1

2

∫
Xi

∣∣P (F ) − P (F |xi)
∣∣ f Xi (xi)dxi .

(5)

Eq. (5) shows that ηi measures the average change of the failure 
probability when input variable Xi is fixed. The sensitivity mea-
sure ηi has a similar form with the moment-independent sensitiv-
ity measure δi proposed by Borgonovo [32]. We can obtain δi by 
replacing the unconditional failure probability P (F ) and the condi-
tional failure probability P (F |xi) in Eq. (5) with the unconditional 
PDF fY (y) and conditional PDF fY |xi (y) of model output Y sep-
arately. The moment-independent sensitivity measure can reflect 
the average effect of input variable on the whole PDF of model out-
put. The failure-probability-based global sensitivity measure can 
reflect the average effect of input variable on the failure probabil-
ity. Since the failure probability is often related to the tail behavior 
of the distribution of model output, ηi can also reflect the effect of 
input variable Xi on the tail behavior of the distribution of model 
output. More details about ηi can be found in [36].

2.2. Estimation of the failure probability-probability-based global 
sensitivity measure

According to the definition in Eq. (5), it can be seen that the 
key of estimating ηi requires calculating the unconditional fail-
ure probability P (F ) and the conditional failure probability P (F |xi)

with different values of Xi . Therefore, many methods for estimat-
ing failure probability can be utilized to estimate ηi . Since the MCS 
method is a widely used method for estimating failure probability, 
a traditional MCS method with double-loop sampling is introduced 
to estimate ηi in this subsection. Based on Eq. (5), the procedure 
for estimating ηi can be represented as follows.

(1) Generate a set of samples (x(1), x(2), . . . , x(N)) of input vari-
ables X = (X1, X2, . . . , Xd) according to the corresponding 
joint PDF f X (x). Then, estimate the failure probability P (F )

as

P̂ (F ) = 1

N

N∑
j=1

I F
(
x( j)). (6)

(2) Generate a set of samples (x(1)
i , x(2)

i , . . . , x(Nc)
i ) of input variable 

Xi (i = 1, . . . , d) according to the corresponding PDF f Xi (xi). 
For each sample x( j)

i ( j = 1, . . . , Nc), generate a set of sam-

ples (x(1)
∼i , x

(2)
∼i , . . . , x

(N)
∼i ) of the other input variables X∼i =

(X1, . . . , Xi−1, Xi+1, . . . , Xd) based on the corresponding joint 
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