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The extended gas-kinetic scheme (GKS) for turbulence simulations is developed based on the generalized 
BGK equation with the effective relaxation time. This relaxation time can be computed from the 
turbulent viscosity, through which turbulence models can be directly combined. For engineering low-
cost simulations of high Reynolds number flows, common-used RANS models are applied, while the LES 
and hybrid RANS/LES (DES and IDDES) models as well as the minimized dispersion and controllable 
dissipation (MDCD) reconstruction are adopted in high fidelity turbulence simulations. In addition, the 
turbulent transport equations are solved in a strongly coupled way by using GKS with scalar transport. 
The extended GKS is applied in typical turbulent flow predictions including the RANS simulation of 
hypersonic compression ramp flow and the detailed simulation of multiscale turbulent structures in low-
speed cylinder flow with hybrid models. The predicted results agree well with existing experimental 
measurements and numerical studies, which shows the good accuracy, resolution and robustness 
of the extended GKS and reveals the wide prospects in turbulence simulations on different model 
scales, including the multiscale models such as hybrid RANS/LES methods. Furthermore, the multiscale 
turbulence simulation methods are worthy of further studies based on the generalized BGK model.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

The gas-kinetic scheme (GKS or GKS-NS) is a new CFD method 
based on the approximate solution of mesoscopic BGK equation 
on Navier–Stokes (NS) level [1]. In this scheme, the viscous and 
inviscid transports are coupled automatically and with consistent 
inherent dissipation mechanism, which guarantees its good perfor-
mances in various flow problems, such as hypersonic viscous flows 
[2,3], magnetohydrodynamics [4], as well as the high accuracy and 
high resolution schemes for flow fine simulations [5–7]. The most 
existing applications focus on laminar flows so far.

Turbulence is a typical flow problem in engineering applica-
tions. Due to the multiscale features, it is a challenge to balance 
the accuracy requirements and computational costs [8,9] in nu-
merical simulations, especially for high-Reynolds-number flows. 
Among turbulence models or simulation methods, the direct nu-
merical simulation (DNS) solves the NS equations on grid cell size 
near the smallest (dissipation) scale. DNS method can capture fluc-
tuations on all the scales, but the computational cost is too high 
for engineering high-Reynolds-number flow simulations. On the 
contrary, with the help of turbulence models, the Reynolds aver-
aged Navier–Stokes (RANS) equations can be cheaply solved with 
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coarse grid only to capture the very large (integral) scale struc-
tures. Different from DNS and RANS, large eddy simulation (LES) 
[10] handles the filtered NS equations, and is closed by additional 
sub-grid models based on the filtering scale or grid cell size. Thus 
LES can be regarded as a multiscale method. To further reduce 
the grid cost of LES in near wall regions where turbulent fluctu-
ations are strong anisotropic and typically small scale, the hybrid 
RANS/LES method is proposed and become the hot topic in turbu-
lence high fidelity simulations [11]. The hybrid method is also the 
multiscale or multilevel method [12], which can keep good balance 
between flow resolution accuracy and computational cost.

GKS can be directly applied to DNS of low-Reynolds-number 
turbulent flows, such as the DNS of mixing layer [13,14], the ho-
mogeneous turbulence [15,16] and the channel turbulent flow [17]. 
For high-Reynolds-number turbulence, the extended BGK equation 
with the effective relaxation time τe can be used to describe the 
relaxation of turbulent fluctuations [18]. τe can be determined by 
traditional turbulence models. The corresponding scheme is the 
extended GKS, and will be introduced in details in the following. In 
our previous studies, typical turbulence models such as Baldwin–
Lomax (BL), k–ω SST and RNG k–ε models were implemented in 
GKS and showed good performances [19,20]. Similar conclusions 
are also got in other studies [21,22]. In recent research [23], k–ω

model is considered in GKS via τe in renormalized form [18,24], 
and the turbulent ‘rarefaction’ effect is proposed and discussed. In 
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turbulence fine simulations, LES simulation with GKS has also been 
conducted in complex flows around a car side mirror [25].

Despite many existing studies on the extended GKS, there are 
still some problems worthy of further investigations. The first one 
is the influences of numerical schemes and turbulence models. The 
self-adapting numerical dissipation [1] in the extended GKS is of 
more interest which comes from the cross-scale evolving solution 
of the extended BGK equation. The performance in hypersonic tur-
bulent flows also requires evaluation. The second one is the capac-
ity of the extended GKS in high fidelity simulations with multiscale 
models such as the hybrid RANS/LES methods. This work is ex-
pected to be a basis for further researches of turbulence simulating 
and modeling based on gas kinetic theory.

The rest of this paper is arranged as follows. The construction of 
GKS is briefly introduced in section 2. The construction and analy-
sis of the extended GKS for turbulence simulations are in section 3, 
while followed by the numerical simulations and discussions in 
section 4. And the final section is the conclusions.

2. Gas-kinetic scheme

GKS which describes macroscopic flows from the mesoscopic 
BGK-Boltzmann equation is established by Xu et al. [1,3]. The 
scheme is briefly introduced in follows.

The BGK equation is,

∂ f

∂t
+ u · ∂ f

∂x
= g − f

τ
, (1)

where τ is the relaxation time. f is the gas distribution function 
and g is the equilibrium state. f and g are both functions in the 
high-dimensional phase space (x, t, u, ξ) where ξ is the internal 
degree of freedom. And g is the Maxwell distribution,

g = ρ

(
λ

π

)(K+3)/2

e−λ(|u−U|2+ξ2). (2)

Here λ = ρ/(2p), ξ2 = ξ2
1 + ξ2

2 + ... + ξ2
K . K is the total number of 

internal degrees of freedom, with value K = 2 for the diatomic gas 
molecule in three-dimensional (3D) flows.

If f is known, the macroscopic conserved quantities and fluxes 
at the cell interface in the finite volume scheme can be got,

Q = (ρ,ρU,ρE)T =
∫

� f d
,

Fm =
∫

um� f d
, m = 1,2,3.

(3)

During the particle collision processes, f and g satisfy the con-
servation constraint,∫

(g − f )�d
 = 0, (4)

where d
 = du1du2du3dξ1dξ2...dξK , � = (
1,u, 1

2 (|u − U|2 + ξ2)
)T

.
BGK equation Eq. (1) has a general solution,

f (x, t,u, ξ)

= 1

τ

t∫
0

g(x′, t′,u, ξ)e−(t−t′)/τ dt′ + e−t/τ f0(x − ut,u, ξ).
(5)

Here f0 is the initial distribution function at t = 0, in which 
x′ = x − u(t − t′) is the trajectory of particle motions. The char-
acteristic scale of f0 is the kinetic scale, while the characteristic 
scale of g is the hydrodynamic scale. Thus, the general solution 
Eq. (5) naturally contains the multiscale transition between these 
two extreme scales, and the transition process is controlled by 

�t/τ . When simulating flows on NS level, f0 can be constructed 
by the first-order Chapman–Enskog expansion instead of being di-
rectly discretized in the high dimensional phase space, while the 
Taylor expansion is adopted to achieve the target accuracy order. 
Therefore, huge amounts of computational costs can be avoided.

In the second-order accurate GKS, the first order Taylor expan-
sion is adopted, and then f0 and g in Eq. (5) are constructed as, 
(taking the normal direction x1 of the cell interface as an example),

f0(x,u, ξ) =
(

1 + al
mxm − τ (al

mum + Al)
)

(1 − H[x1])gl

+ (
1 + ar

mxm − τ (ar
mum + Ar)

)
H[x1]gr,

g(x, t,u, ξ) = (1 + (1 − H[x1])āl
mxm + H[x1]ār

mxm + Āt)g0.

(6)

The coefficients al,r
m , ̄al,r

m , Al,r and Ā come from the derivatives of 
Maxwellian distribution, and can be computed by the gradients of 
macroscopic conserved quantities. The superscripts l, r represent 
the quantities on the left or the right side of the cell interface, 
respectively. H[x] is the Heviside function to account for the dis-
continuity at a cell interface. So the time evolving distribution 
function f at a cell interface (x = 0) can be explicitly expressed 
in terms of local Maxwellian distributions,

f (0, t,u, ξ) = (1 − C0)g0 + (t − τ + C1) Ā g0

+ (−τ + C1 + C2)(ā
l
mumH[u1]

+ ār
mum(1 − H[u1]))g0

+
(

C0 − (C1 + C2)a
l
mum − C1 Al

)
H[u1]gl

+ (
C0 − (C1 + C2)a

r
mum − C1 Ar) (1 − H[u1])gr,

(7)

where C0 = e−t/τ , C1 = τC0 and C2 = tC0. With f , the macro-
scopic numerical fluxes can be calculated according to Eq. (3), and 
the macroscopic conserved quantities are updated through the fi-
nite volume method. Besides, the second-order accuracy in both 
time and space can be achieved with a single step. Meanwhile, the 
distribution function f in Eq. (7) is a combination of Maxwellian 
function through which the integration to compute macroscopic 
quantities is very simple. So the computational cost is competitive 
with traditional schemes directly based on macroscopic governing 
equations. The usual reconstruction techniques can be directly ap-
plied to obtain the macroscopic quantities and their slopes at the 
cell interface. More details of GKS can be found in the literature 
[1,3,5,26] and will not be repeated here.

It should be noted that in the above distribution function, the 
particle movements in both the normal and tangential directions 
of the cell interface are taken into account, thus the resulted 
GKS is truly multidimensional which is difficult for traditional CFD 
schemes based on macroscopic Euler equations. If neglect the tan-
gential coefficients, the directional splitting scheme can be recov-
ered. Besides, the viscous effect is controlled by the collision time 
τ which is computed by

τ = μ

p
+ C�t

|pl − pr |
|pl + pr | . (8)

Here μ is the molecular viscosity, while pl,r is the reconstructed 
pressure at the corresponding side of a cell interface. The con-
stant C = 1 is simply set and the time step �t is constrained by 
the Courant–Friedrichs–Lewy condition. The last term in the above 
equation takes into account the effect of the discontinuity at a cell 
interface. The free transport of particle in f0 leads to the upwind 
characteristics of the corresponding scheme, such as the kinetic 
flux vector splitting method (KFVS) [27]. The equilibrium state g
corresponds to a central scheme. It should be noted that if f0 and 
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