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In this paper, buckling analysis of two-directionally porous beam is conducted. Based on the available 
results of Young’s modulus and mass density via Gaussian random field theory, a new two-directionally 
porous beam model is developed. With the help of Euler–Bernoulli beam theory and minimum total 
potential energy principle, the equilibrium equations for nonlinear and linear buckling are derived. The 
numerical solutions of critical buckling loads for different porosity distribution patterns can be obtained 
by generalized differential quadrature method. The final numerical results exhibit that more porosities 
near the middle surface or the two edges of beam can lead to a larger critical buckling load when the 
same total volume fraction of porosity is in different porosity distribution patterns. The effect of porosity 
distribution in thickness direction is more dominated on the critical buckling load than that of the axial 
porosity distribution. Moreover, the critical buckling load becomes more sensitive to aspect ratio of beam 
and total volume fraction of the porosity when increasing mode number. The critical buckling load of 
two-directionally porous beam depends not only on bending coefficient (like the one-directionally porous 
beam), but also on first and second derivatives of the bending coefficient.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Porosity, which is often inevitable in the actual manufactur-
ing process of many materials, or formed intentionally to meet 
practical performance requirements in engineering. Compared with 
conventional materials, porous material has a strong designability, 
and it can possess fine-tuned porosity-dependent properties by tai-
loring its architecture. Up to now, the porous material has been 
playing an important role in a wide range of applications including 
topology optimization, micro-electromechanical systems, biotech-
nology, chemical techniques and so on. For example, nanoporous 
ceramic can be used to fabricate the gas-separating asymmetric 
ceramic membranes [1]. Porous sorbent material can remove the 
organics, particularly, it has a great potential to be utilized in 
worldwide oil governance such as oil upgrading and pollutants re-
moval [2]. Porous zeolites have specific chemical properties to ap-
ply in size- and shape-selective catalysis and separation [3]. Kim et 
al. [4] investigated the noise absorption properties of porous ma-
terials by utilizing the Delany–Bazley empirical material model. It 
has been reported in [5–7] that porosity deemed as gas phase can 
effectively tailor material dielectric properties. Also, some porous 
materials can be applied in artificial organs [8–10], energy absorp-
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tion devices [11–13], electromagnetic equipments [14,15], struc-
tural health monitoring [16], and displacement amplifier [17] due 
to their distinctive mechanical properties, especially the negative 
Poisson’s ratio property.

Buckling instability is one of the most important problems en-
countered in engineering, which occurs when the external load ex-
ceeds the critical buckling load. In recent years, there has been an 
unprecedented upswing on the buckling analysis of beams, planes 
and shells [18–31]. On the one hand, porous material can tailor 
the static and dynamic behaviors of structures by different porosity 
distributions. On the other hand, the inappropriate porosity design, 
especially in the case of stress fatigue, may cause serious engi-
neering problems, such as crack germination and growth [32–34]. 
Therefore, it is highly necessary to carry out the static and dy-
namic analyses of different porous structures exactly. Magnucki et 
al. [35] derived the analytical solution for the critical load of a 
considered beam made of isotropic one-directionally porous ma-
terial. Magnucka-Blandzi et al. [36] conducted the buckling and 
bending analyses of a circular porous plate acted by buckling 
force and uniformly distributed load. Overvelde et al. [37] inves-
tigated the effect of porosity shape on the buckling behavior of 
two-dimensional periodic porous structures and found the poros-
ity shape can be helpful for controlling some characteristics of 
soft porous systems. The buckling analysis of functionally graded 
porous circular plate was studied in Ref. [38], and the effects 
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Nomenclature

“O”, “Ō”, “X”, “X̄” Four kinds of porosity distribution patterns
x, y, z different coordinates along length, width, thickness di-

rections of beam
L length of beam
h thickness of beam
b width of beam
α total volume fraction of porosity
V p volume fraction of porosity for different locations
ρ mass density of porous beam
E Young’s modulus of porous beam
ρ0 mass density of material without porosity

E0 Young’s modulus of material without porosity
u, w axial and transverse displacements for the mid axis
P axial compressing force
Pcr dimensional critical buckling load
P̄ cr dimensionless critical buckling load
I second moment of cross section
Axx extensional coefficient
Bxx extensional-bending coupling coefficient
Dxx bending coefficient
N resultant force for the beam’s cross section
M resultant moment for the beam’s cross section

of porosity, thickness of plate, and different boundary conditions 
were presented.

As for the above-mentioned buckling analysis of porous struc-
tures, it is found that their porous models are one-directional, that 
is, the Young’s modulus and the mass density of them change 
only in the thickness direction [39–41]. However, in fact, the vol-
ume fraction of porosity can vary with the three-dimensional (3D) 
position coordinates in most porous materials, i.e., the Young’s 
modulus and the mass density of porous models may vary along 
different directions. Therefore, the one-directionally porous models 
widely used in the static and dynamic analyses have some lim-
itations. It is urgent to propose a more practical porous model 
for our buckling analysis. First of all, the assessment of Young’s 
modulus and mass density of the porous beam is an extraordi-
nary basic and critical work. Some evidence in Refs. [42–47] has 
shown that the location, shape, size, volume fraction of the poros-
ity exert significant influence on the Young’s modulus and mass 
density. Moreover, the experimental data in Ref. [48] indicates 
that the Young’s modulus of the porous material is also related 
to its mass density. According to the Voronoi tessellations [49]
and Gaussian random fields theories [50,51], Roberts et al. [46,47]
proposed general theoretical results of Young’s modulus and mass 
density for random 3D closed-cell and open-cell porous materials 
by finite element method (FEM). These results of Young’s modu-
lus and mass density are highly consistent with the experimental 
data and very successful when they are exploited in porous struc-
tural modeling [52,53,40,54,55]. Therefore, the available results of 
Young’s modulus and mass density via Gaussian random field the-
ory can be utilized to develop a new two-directionally porous 
beam model.

In this study, the new two-directionally porous beam model 
will be proposed and employed in buckling analysis of two-
directionally porous beam. At first, the two-directionally porous 
beam model considering several typical porosity distribution pat-
terns will be presented in Section 2. Next, the equilibrium equa-
tions for nonlinear and linear buckling of the two-directionally 
porous beam will be deduced by Euler–Bernoulli beam the-
ory and minimum total potential energy principle in Section 3. 
Whereafter, the generalized differential quadrature method can 
be used to solve the equilibrium equations for buckling of the 
two-directionally porous beam in Section 4. At last, some mean-
ingful numerical results are discussed and presented in Sec-
tion 5.

2. Modeling of two-directionally porous beam model

In this section, a new two-directionally porous beam model will 
be introduced. As shown in Fig. 1, we consider a beam model 
with length L, thickness h and width b, and the beam is made of 
two-directionally porous material including “O”, “Ō”, “X”, “X̄” type 

porosity distribution patterns. The descriptions of porosity distri-
bution patterns can be outlined as follows:

(i) “O” type distribution: In x direction, the farther away from the 
two edges of beam, the more porosities are. In z direction, the 
closer to the middle surface, the more porosities are.

(ii) “Ō” type distribution: In x direction, the farther away from the 
two edges of beam, the less porosities are. In z direction, the 
closer to the middle surface, the less porosities are.

(iii) “X” type distribution: In x direction, the farther away from the 
two edges of beam, the more porosities are. In z direction, the 
farther away from the middle surface, the more porosities are.

(iv) “X̄” type distribution: In x direction, the farther away from 
the two edges of beam, the less porosities are. In z direction, 
the farther away from the middle surface, the less porosities 
are.

(v) Uniform distribution: In x and z directions, the porosities are 
distributed uniformly.

It is assumed that all the porosity distribution patterns have 
the same total volume fraction of porosity α, and then the vol-
ume fraction of porosity V p for different locations can de defined 
by:

V p (x, z) = λ (x, z)α, (1)

where λ (x, z) is feature function for different porosity distribu-
tions, and it can be given by

λ (x, z)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

η2
1 sin (πx/L) cos (π z/h) , “O” type distribution

η2
2 [1 − sin (πx/L)] [1 − cos (π z/h)] , “Ō” type distribution

η1η2 sin (πx/L) [1 − cos (π z/h)] , “X” type distribution

η1η2 [1 − sin (πx/L)] cos (π z/h) , “X̄” type distribution

1, uniform distribution

(2)

with

η1 = π

2
, η2 = π

π − 2
.

Since two-directionally porosities are distributed in the xz plane 
of beam, the porous beam has the porosity-dependent mechan-
ical properties related to x and z. The mass density ρ of two-
directionally porous beam can be given by:

ρ (x, z) = (
1 − V p

)
ρ0, (3)

where ρ0 is the mass density of materials without porosity.
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