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The first experimental application of the Parametric Flutter Margin method for identification of 
aeroelastic instabilities is presented. The experiment was performed in two steps using a two degree-
of-freedom wing segment mounted in the wind tunnel. First, the reference flutter and divergence 
conditions were found by increasing the free-stream velocity until the observed response diverged. 
Then, the system was stabilised according to the Parametric Flutter Margin methodology, and the flutter 
and divergence conditions of the original test model were identified positively while being in a stable 
regime demonstrating excellent agreement with the reference instability conditions. Although the new 
experimental methodology is not model based, the results were compared with a theoretical model 
showing good agreement as well. The acquired data demonstrates both the accuracy of the Parametric 
Flutter Margin method as well as its capability to test for aeroelastic instabilities, both flutter and 
divergence, in stable and predictable testing conditions.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Flight testing, used to prove that the aircraft flight envelope 
is flutter free, is a risky task. The flutter boundary is cautiously 
approached by gradually increasing the flight speed until the 
flight envelope is reached or a damping coefficient reaches the 3% 
threshold [1]. Meanwhile, the aircraft response to various sources 
of excitation like atmospheric turbulence or control surface de-
flections is continuously monitored and analysed. In some cases, 
such as explosive flutter, damping might suddenly rapidly decrease. 
Hence flutter might be encountered by accident causing severe 
damage to the aircraft. Consequently, such tests are accompanied 
by numerous numerical analyses, wind tunnel and ground testing 
to avoid bringing the tested aircraft too close to the flutter bound-
ary by accident [1].

Various flight-test data-analysis methods are available for ap-
plication in on- and off-line manner to identify the flutter con-
ditions. Among others: damping extrapolation [2], envelope func-
tion [3], the Zimmerman–Weissenburger flutter margin [4], the 
model-based flutterometer method [5], and using a discrete-time 
autoregressive moving average (ARMA) model [6]. Operating at 
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flutter conditions might have catastrophic results. Therefore, all 
the approaches rely, in one way or another, on extrapolation to 
predict the flutter conditions while staying at safe flying condi-
tions, which makes the tests expensive, time-consuming and risky. 
On the contrary, the recently developed Parametric Flutter Mar-
gin (PFM) method [7] is based on analysing frequency-response 
functions (FRFs) at and beyond the nominal flutter onset condi-
tions, but with the system modified such that it is actually stable. 
This allows us to identify flutter positively without exceeding the 
pre-determined safe vibration levels. It is anticipated that the PFM 
methodology will be very instrumental in the design of future 
flutter-test campaigns improving their safety and reduce the time 
and effort required to ensure that the flight envelope is indeed 
flutter free.

Karpel and Roizner [8] proposed a novel method for finding 
the flutter boundary experimentally based on their numerical PFM 
method [7]. The experimental PFM mitigates some of the deficien-
cies of the currently established methods, namely the need to ap-
proach the flutter boundary cautiously, and the fact that the flutter 
boundary is never positively identified unless erroneously encoun-
tered. The PFM method is based on the idea that the stability 
point of an aeroelastic system can be offset by adding a stabilis-
ing element. In the case of wing flutter, such a stabilising element 
could be an added mass at the leading edge of the wing tip. Such 
an augmented system is then subjected to harmonic excitation to 
obtain the FRF of the stabilising element, for instance, the acceler-
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Nomenclature

[A(iω)] PFM system matrix
{B f } Distribution vector, {B f } = [1, xs]T

C(k) Theodorsen function
C0 Airfoil centre of gravity
[C f (iω)] Acceleration sensor, [C f (iω)] = −ω2[1, xs]
Cs Location of the stabilising mass
Fih Force measured by the impedance head
Fs External excitation force
H(ω; v0) Frequency response function
J0 Airfoil moment of inertia around C0
L Lift
M0 Constant torque applied in divergence test
Mc/4 Aerodynamic moment about point Q
P Airfoil hinge point
Q Quarter-chord point
Y f (ω) Gain function
a Non-dimensional location of P , P = (1 + a)b
a1,a2 Acceleration measured by Accelerometer 1 and 2
aih Acceleration measured by the impedance head
as Acceleration of the stabilising mass
b Airfoil semi-chord, b = c/2
c Airfoil chord length
dh Heave damping
dθ Pitch damping
e0 Non-dimensional location of C0, C0 = (1 + e0)b
es Non-dimensional location of Cs , Cs = (1 + es)b
h Heave DOF
hLV DT Heave DOF measured by the LVDT
k Reduced frequency, k = ωb/v0
kh Heave stiffness
ks Stiffness of the extensional spring
kθ Pitch stiffness
ks
θ Stabilising torsional stiffness

m∗ Support mechanism mass
m0 Airfoil mass
r Dimensionless radius of gyration about P , r2 = ( J0 +

m0x2
0b2)/(m0b2)

rp Pulley radius
rs

p Pulley radius in divergence test for stabilisation stiff-
ness

rp1 Pulley radius in divergence test with wind-on condi-
tions

t Time
u f Excitation input
v0 Freestream velocity
vd Divergence speed
v f Flutter speed
x0 Eccentricity of the airfoil section, x0 = e0 − a
xs Eccentricity of the stabilising mass, xs = es − a
y f Acceleration in heave DOF at Cs

ζ(iω) Vector of DOFs, ζ(iω) = [ξ, θ]T

ηθ Normalised damping coefficient of the pitch DOF, ηθ =
dθ /(m0b2)

ηξ Normalised damping coefficient of the heave DOF, 
ηξ = dh/(m0b)

θ Non-dimensional pitch DOF
θR V DT Pitch DOF measured by RVDT
θs Pitch DOF deflection due to M0
μ∗ Support to section mass ratio, μ∗ = m∗/m0
μs Stabilising to section mass ratio, μs = ms/m0
ξ Non-dimensional heave DOF, ξ = h/b
ρ Air density
� f (ω) Phase function
χθ Force in the pitch DOF
χξ Force in the heave DOF
ωpco Phase cross-over frequency
ωθ Circular frequency of the pitch DOF, ωθ =√

kθ / J0 + m0x2
0b2

ωξ Circular frequency of the heave DOF, ωξ = √
kh/m0

A Wing aspect ratio
ARMA Autoregressive moving average
CG Centre of gravity
DOF Degree of freedom
FFT Fast Fourier transform
FRF Frequency response function
LVDT Linear variable differential transformer
PFM Parametric flutter margin
RVDT Rotary variable differential transformer
SDOF Single degree of freedom

ation of the added mass which is then analysed for gain margin at 
phase-cross-over (pco) frequency. The flutter boundary of the orig-
inal system excluding the added stabilising mass is reached when 
the gain margin of the stabilising element equals 0 dB. The FRF 
analysis is repeated at various flight conditions to obtain the gain 
margin vs flight speed characteristics. The flutter speed is read 
from the graph at 0 dB. Details on the theoretical foundation of 
the PFM method and its formulation are provided in Roizner and 
Karpel [7] while the key equations and their application related to 
this experiment are outlined in this paper.

It is worth pointing out that the PFM method allows for the 
flutter boundary identification of the original system excluding 
the added mass while the augmented system remains stable. This 
greatly reduces the risk of such experimental efforts.

The contribution to the state of the art of this paper is a proof 
of concept and validation of the proposed PFM method using a 
typical wing section with pitch and plunge degrees of freedom 
(DOF) mounted in the wind tunnel. The paper is organised as 
follows: in Sec. 2 the mathematical formulation of the 2DOF aeroe-
lastic system along with its PFM implementation related to the 
experiment is presented, Sec. 3 describes the experimental setup 

and the testing procedure. The results are shown in Sec. 4, and the 
conclusions of this work are given in Sec. 5.

2. Theoretical model of the aeroelastic system

The mathematical formulation of the 2DOF airfoil along with 
its PFM implementation relevant to this experiment is presented 
in this section. The mathematical model had three main purposes. 
First, to configure the experimental setup to obtain the aeroelastic 
instability at a velocity within the wind tunnel capabilities. Second, 
to size and position the stabilising weight such that the flutter ve-
locity would increase by at least 15%, and the third purpose was 
the comparison with the experimental results. It has to be stressed, 
however, that the experimental PFM method or its results do not 
depend on the application of this mathematical model. The exper-
imental PFM method is not model-based and does not require any 
mathematical model of the aeroelastic system to identify the nom-
inal flutter conditions if they exist in the test velocity range.

First, the governing equations of motion are presented, followed 
by the presentation of the PFM methodology.
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