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A Lagrangian formulation for the dynamics of unsteady point vortices is introduced and implemented. 
The proposed Lagrangian is related to previously constructed Lagrangian of point vortices via a gauge-
symmetry in the case of vortices of constant strengths; i.e., they yield the exact same dynamics. However, 
a different dynamics is obtained in the case of unsteady point vortices. The resulting Euler–Lagrange 
equation derived from the principle of least action exactly matches the Brown–Michael evolution 
equation for unsteady point vortices, which was derived from a completely different point of view; based 
on conservation of linear momentum. The proposed Lagrangian allows for applying Galerkin techniques 
to the weak formulation of the vortex dynamics. The resulting dynamic model of time-varying vortices 
is applied to the problem of an impulsively started flat plate as well as an accelerating and pitching 
flat plate. In each case, the resulting lift coefficient using the dynamics of the proposed Lagrangian is 
compared to that using previously constructed Lagrangian, other models in literature, and experimental 
data.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Reduced-order modeling of unsteady aerodynamics has been a 
topic of research interest since the early formulations of Prandtl 
[1] and Birnbaum [2]. These formulations were followed by the 
seminal works of Wagner [3] and Theodorsen [4]; the later efforts 
of Leishman [5,6] and Peters [7,8]; and in more recent papers by 
Ansari et al. [9,10], Taha et al. [11] and Yan et al. [12] among oth-
ers. Because of its ability to account for deforming wakes associ-
ated with relatively large amplitude maneuvers, flexible wings, and 
arbitrary time-varying wing motions, development of the vortex 
lattice method (UVLM) [13–19] represents a hallmark in the his-
tory of unsteady aerodynamic modeling. In DVMs [20–22], a point 
vortex is released at each time step to satisfy the Kutta condition 
at the sharp edge it sheds from. Moreover, all of the shed vortices 
move with constant strengths that have been dictated at the shed-
ding time by the Kutta condition. As such, Helmholtz conserva-
tion laws [23] dictate that the dynamics of these constant-strength 
point vortices will force them to convect with the fluid’s local 
velocity, i.e. the Kirchhoff velocity, see Saffmann [24], pp. 10. Al-
though DVMs were used to develop efficient numerical algorithms 
to solve for aerodynamic quantities associated with unsteady ma-
neuvers, they require shedding point vortices at each time step, 
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which increases the number of degrees of freedom considerably 
as the simulation time increases [25,26]. As a remedy, it has been 
suggested to replace the continuous shedding of constant-strength 
point vortices [27] with discontinuous/intermittent shedding of 
varying-strength point vortices, i.e. the strength of the most re-
cent shed point vortex is adjusted each time step to satisfy the 
Kutta condition, instead of shedding a new vortex to achieve the 
same objective. Shedding is deactivated until the strength of the 
unsteady point vortex reaches an extremum [28,29]. At that in-
stant, a new point vortex is shed from the same edge and the 
previous vortex is convected downstream with the Kirchhoff ve-
locity while keeping its strength constant.

Variational principles have been shown to be useful physical-
based approaches for deriving governing equations of both solids 
and fluids [30,31]. These equations are obtained by setting the first 
variation of the action, which is the time integral of a candidate 
Lagrangian function, to zero. Clebsh [30] and Hargreaves [32] de-
rived the equations of motion for an inviscid, incompressible flow 
by defining the Lagrangian to be the integral of the fluid pres-
sure. Later, Bateman [33] extended the principle to the case of 
compressible irrotational flow. Luke [34] showed that using vari-
ational principles, one is able to provide the boundary conditions 
by perturbing the limits of integration (Leibniz integral rule). Re-
garding the vortex motion, Bateman [33], followed by Serrin [35], 
showed that the equations of motion of vortex lines could be ob-
tained from a variational approach with the ability to regularize 
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Nomenclature

α flat plate angle of attack
c flat plate chord
Fx, F y flat plate forces in x and y directions respectively
�k kth vortex strength
wk regularized fluid velocity of kth vortex
W , W̃ Kirchhoff–Routh functions in flat plate and circle plane 

respectively
zc flat plate centroid position in Z plane

zk kth vortex position in Z plane (x + iy)
ζk kth vortex position in ζ plane (ξ + iη)
ζ

(I)
k Image position of kth vortex in ζ plane (ξ + iη)

| | Absolute value of complex number, |z| = √
x2 + y2

(̇ ) derivative w.r.t. time
( )∗ conjugate
( )′ derivative w.r.t. ζ , d

dζ

the infinite velocity at the vortex center (Sec. 4 in Ref. [33]). These 
variational principles were also used to derive governing equations 
for the cases of fluid motion with distributed vorticity [36] or point 
vortices [37] with no boundaries, and for the case of a fluid-body 
interaction [38] that considered constant strength vortices only. 
Advances made in studying the Hamiltonian dynamics of point 
vortices [39,37,40] point to the potential of developing a varia-
tional principle governing the dynamics of unsteady point vortices 
interacting with a circular cylinder or a body conformal to it (e.g., 
airfoil), which is the objective of this work. Such a formulation 
will allow satisfaction of conservation laws via adding constraints 
to the variational problem. In addition, it will enable compact and 
efficient coupling with other variational principles governing rigid 
body and structural dynamics for coupled unsteady flight dynam-
ics analysis and/or aeroelastic analysis. To date, there have been no 
developments for variational principles governing the dynamics of 
unsteady point vortices interacting with solid bodies enclosed by a 
non-zero total circulation.

The dynamics of constant-strength, point vortices in an invis-
cid fluid, which is governed by the Biot–Savart law, was derived 
by Chapman [39] from an action whose Lagrangian is the sum-
mation of two functions. The first function is a bilinear function 
in the vortex spatial coordinates and its velocity, and the sec-
ond one is the Routh stream function. Recently, Shashikanth et al. 
[40] proved that the equations of motion for a cylinder moving in 
the presence of constant-strength vortices of zero sum (i.e., zero 
total circulation), known as Foppl problem [41,42], have a Hamil-
tonian structure. Dritschel and Boatto [43] showed similar results 
for three dimensional differentiable surfaces conformal to a sphere.

In the present work, we present a new Lagrangian function 
for the dynamics of point vortices that is more general than 
Chapman’s [39]. We examined the relation between the proposed 
Lagrangian and Chapman’s Lagrangian for the cases of constant 
strength and time-varying point vortices. Interestingly, the pro-
posed Lagrangian dynamics of unsteady point vortices recovers 
the momentum based Brown–Michael model [44]. We applied the 
Galerkin technique to the resulting weak formulation of the time-
varying vortices for the problem of an impulsively started flat plate 
as well as an accelerating and pitching flat plate, with comparison 
to experimental data in the literature [45,46]. To the best of our 
knowledge, this is the first variational principle to govern the dy-
namics of unsteady point vortices.

2. Lagrangian dynamics of point vortices

2.1. General formulation

Considering the flow around a sharp-edged body (in the 
z-plane) and mapping it to the flow over a cylinder (in the 
ζ -plane) with an interrelating conformal mapping z = z(ζ ), as 
shown in Fig. 1, the regularized local fluid velocity (Kirchhoff ve-
locity) of the shed kth vortex is given by [47–49]

Fig. 1. Conformal mapping between a sharp-edged body and a circular cylinder.

dzk

dt
= wk(zk)

= 1

[z′(ζk)]∗ lim
ζ−→ζk

[
∂ F

∂ζ
− �k

2π i

1

ζ − ζk
− �k

4π i

z′′(ζ )

z′(ζ )

]∗ (1)

where F is the complex potential, �k is the strength of the kth vor-
tex, and the asterisk refers to a complex conjugate. The last term 
on the right hand side, which involves the second derivative of the 
transformation, was first derived by Routh then by Lin [47] and 
later by Clements [48].

Lin [50] showed the existence of a Kirchhoff–Routh function W
(Ref. [51] sec. 13.48) that relates the velocity components of the 
kth vortex to the derivatives of W , in a Hamiltonian form such 
that the velocity components of the vortex in z plane are

�kuk = ∂W

∂ yk

�k vk = −∂W

∂xk

(2)

The Kirchhoff–Routh function W̃ in the circle plane is related to 
the stream function ψ0 by [47,51,52]

W̃ (ξk, ηk) = �kψo(ξk, ηk)

+
∑

k,l,k �=l

�k�l

4π

[
ln |ζk − ζl| − ln |ζk − ζ I

l |
]

+
∑

k

�2
k

4π
ln|ζk − ζ

(I)
k |

(3)

where ψo is the stream function of the body motion (i.e., F =
F0 + ∑n

k=1 �k and F0 = φ0 + iψ0). Then the relation between the 
Kirchhoff–Routh function W in the flat plate plane and that in cir-
cle plane W̃ is given as [47]:

W = W̃ +
∑

k

�2
k

4π
ln| dz

dζ
| (4)
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