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The finite-time tracking control problem via output feedback for a nonholonomic wheeled mobile robot 
with a higher-order dynamic model is investigated in this paper. To solve the problem when the robot’s 
velocities cannot be measured, some coordinate changes are skillfully introduced at the first step. Then 
based on the fast finite-time control algorithm, a fast finite-time state feedback controller is designed 
and then a fast finite-time observer is constructed. Finally, an observer-based dynamic output feedback 
controller is proposed, which can guarantee that the reference trajectory can be tracked in a finite time 
through a rigorous stability analysis. An example is given to verify the efficiency of the proposed method.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Due to the well-known Brockett Theorem [1], the control prob-
lem for a nonholonomic system is challenging and hence has at-
tracted many attentions. As one of the benchmark nonholonomic 
system, many different control strategies have been employed for 
a wheeled mobile robot. Since it is impossible to achieve stabi-
lization by employing any smooth or continuous time-invariant 
state feedback control, some other control strategies have been 
proposed, such as smooth time-varying control [2], discontinuous 
control [3], hybrid control [4], adaptive control [5], etc. Besides the 
stabilization problem, another interesting problem for a wheeled 
mobile robot is to design the trajectory tracking controller.

The work [6] solved the local tracking control problem of a mo-
bile robot based on the linearization model. By using backstepping 
design, the global tracking control for mobile robots was solved in 
[7]. Furthermore, the work [8] considered the tracking controller 
design under the input saturation constraint. Based on the the-
ory of cascaded system, the work [9] investigated the trajectory 
tracking control of nonholonomic systems with exponential con-
vergence. To improve the tracking speed, recently, the finite-time 
control technique [10] was employed to design finite-time tracking 
control algorithms for wheeled mobile robots, that is the reference 
trajectory can be tracked in a finite time. In addition, a fascinat-
ing advantage of finite-time control lies in its good robustness, 
such as in [11–17]. For example, by using the theory cascaded sys-
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tem, the work [18] solved the global finite-time tracking control 
problem of a nonholonomic wheeled mobile robot with kinematics 
model. For the wheeled mobile robot with dynamic model, based 
on the technique of adding a power integrator, the work [19] pro-
posed a higher-order finite-time tracking controller. Recently, for 
the formation control problem for multiple nonholonomic wheeled 
mobile robots, the work [20,21] studied the finite-time formation 
tracking control problem.

Due to the technology limitations or environment disturbances, 
or cost consideration, the velocity information for mobile robot is 
often unavailable. In this case, the observer and output feedback 
are required [22,23]. Compared to the state feedback control, the 
output feedback control for nonlinear systems is more challenging. 
In [24], an output feedback controller via delayed measurements 
was designed for a unicycle-type mobile robot. As for the finite-
time output feedback control, it is more difficult even for the linear 
systems or lower-order nonlinear systems. The work [25] solved 
the finite-time output feedback stabilization for double-integrator 
systems. Based on the finite-time convergent observer, the output 
feedback controller was designed for an aircraft in [26,27].

Although there have been some results about the finite-time 
output control [28–30], no available result/method to the consid-
ered system in this paper, i.e., a nonholonomic wheeled mobile 
robot with a higher-order dynamic model. The main difficulty lies 
in the inherent nonlinear features. The main work/motivation of 
this paper is to provide a solution for the finite-time output feed-
back tracking control for a nonholonomic wheeled mobile robot. To 
solve the previous mentioned problem, first, a finite-time tracking 
controller via state feedback is designed based on certain coordi-
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nate changes. Then, when only the position information is avail-
able, two finite-time convergent observers are proposed to esti-
mate the velocities in a finite time. Finally, the finite-time trajec-
tory tracking control problem for a nonholonomic wheeled mobile 
robot via output feedback is solved.

2. Preliminaries and problem formulation

2.1. Problem formulation

As that in [7,19], consider the tracking control problem for 
a nonholonomic wheeled mobile robot with two-degrees-of free-
dom. The dynamic of non-holonomic mobile robot is described by:

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω

v̇ = u1

ω̇ = u2, (1)

where (x, y) is the Cartesian position of the robot center, θ is the 
orientation, v and ω are the linear velocity and the angular veloc-
ity, u1 and u2 are the controllers.

The reference signal for the mobile robot is generated by

ẋd = vd cos(θd), ẏd = vd sin(θd), θ̇d = ωd. (2)

The control objective of this paper is to design controllers for 
(u1, u2) such that the reference trajectory (xd, yd, θd)

T can be fol-
lowed by the robot’s trajectory in a finite time under the constraint 
condition that the velocity information (v, ω)T is unavailable.

2.2. Some useful definitions and lemmas

Definition 1. Denote sigα(x) = sign(x)|x|α , where α ≥ 0, x ∈ R , 
sign(·) is the standard sign function. If x = [x1, x2, · · · , xn]T ∈ Rn

is a vector, then sigα(x) = [sigα(x1), sigα(x2), · · · , sigα(xn)]T .

Definition 2. Define a class of new nonlinear functions:

fsigα(x) =
{

x, for |x| > 1;
sigα(x), for |x| ≤ 1,

(3)

where 0 < α < 1, x ∈ R . If x = [x1, x2, · · · , xn]T ∈ Rn is a vector, 
then fsigα(x) = [fsigα(x1), fsigα(x2), · · · , fsigα(xn)]T .

Lemma 1 ([31]). The second-order system

ẍ = u, (4)

can be globally stabilized in a finite time under the feedback control law

u = −k1sigα1(x) − k2sigα2(ẋ), (5)

with k1, k2 > 0, α1 ∈ (0, 1), α2 = 2α1/(1 + α1).

Lemma 2 ([25]). The following second-order system

ė1 = e2 − l1sigβ1(e1), ė2 = −l2sigβ2(e1) (6)

is globally finite-time stable with l1 > 0, l2 > 0, 1/2 < β1 < 1, β2 =
2β1 − 1.

3. Main results

In this section, it will be shown that the finite-time tracking 
control problem for mobile robot systems (1)–(2) via output feed-
back control is solvable. The controller design is divided into three 
steps. Firstly, a finite-time tracking controller via state feedback is 
designed. Secondly, when the robot’s velocity information is un-
available, a finite-time convergent observer is constructed to esti-
mate the unknown velocity in a finite time. Finally, an observer-
based finite-time tracking controller via output feedback is given.

3.1. Design of finite-time tracking controllers via state feedback

Theorem 1. For the mobile robot systems (1)–(2), if the controllers 
(u1, u2) are designed as[

u1
u2

]
=

[
cos θ −l sin θ

sin θ l cos θ

]−1 [
ux + vω sin θ + lω2 cos θ

u y − vω cos θ + lω2 sin θ

]
, (7)[

ux

u y

]
= −k1

[
fsigα1(x − xd + l cos θ − l cos θd)

fsigα1(y − yd + l sin θ − l sin θd)

]

− k2

[
fsigα2(v cos θ − vd cos θd − lω sin θ + lωd sin θd)

fsigα2(v sin θ − vd sin θd + lω cos θ − lωd cos θd)

]

+
[

v̇d cos θd − vdωd sin θd − lω2
d cos θd − lω̇d sin θd

v̇d sin θd + vdωd cos θd − lω2
d sin θd + lω̇d cos θd

]
, (8)

then the state (xh, yh) will track the desired state (xd
h, y

d
h) in a finite time, 

where (xh, yh) is a position off the wheel axis of the mobile robot by a 
distance l given by:[

xh
yh

]
=

[
x
y

]
+ l

[
cos θ

sin θ

]
, (9)

k1, k2 > 0, α1 ∈ (0, 1), α2 = 2α1/(1 + α1).

Proof. Under the coordinate change (9), let

z = [xh, yh]T , (10)

and define

g = ż, f = ġ = z̈. (11)

Denote

g = [vx, v y]T , f = [ux, u y]T . (12)

Under the above notation and the coordinate change (9), it follows 
from the system equation (1) that[

u1
u2

]
=

[
cos θ −l sin θ

sin θ l cos θ

]−1 [
ux + vω sin θ + lω2 cos θ

u y − vω cos θ + lω2 sin θ

]
. (13)

Similarly, for the desired trajectory, define

zd = [xd
h, yd

h]T =
[

xd
h

yd
h

]
=

[
xd
yd

]
+ l

[
cos θd
sin θd

]
(14)

be the desired state with gd = żd, fd = ġd .
Define

z̄ = z − zd, ḡ = g − gd, (15)

as the tracking error, which leads to the error dynamics is

˙̄z = ḡ,

˙̄g = f − fd. (16)
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