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This paper presents an improved nonlinear dynamic inversion control approach for the longitudinal 
dynamics of a flexible air-breathing hypersonic vehicle. The control design of the approach is based 
on a control-oriented model that represents the nominal state. By establishing a three inputs and three 
outputs control system, the control-oriented model in this study has full relative degree, without dynamic 
extension. To maintain tracking performance in the presence of disturbances, a nonlinear disturbance 
observer is adopted to estimate the disturbances, and an adaptive damping term is proposed to the pitch 
dynamics. Based on approximate input–output linearization, linear control theory is applied to design 
a pole placement controller for the equivalent linear system. The damping ratio, natural frequency, and 
simple pole of the pole placement controller are optimized by the genetic algorithm along with the full 
nonlinear model of the vehicle. During the optimization, 11 uncertain parameters are introduced to the 
nonlinear model. Monte Carlo evaluation for the optimized pole placement controller shows that the 
controller provides robust tracking of reference trajectories. Simulation results indicate the effectiveness 
of the proposed control approach.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

With the development of scramjet technology, the flying of the 
air-breathing hypersonic vehicle (AHV) has become a reality [1–3]. 
The AHV presents a cost-efficient way for access to space, because 
the scramjet engine does not carry oxygen and has high specific 
impulse. In the past decade, the successful flight of X-43A, X-51A, 
and Hyshot2 has given a great number of test data on the aero-
dynamics, structure, guidance, and control of AHVs. However, the 
strong coupling among the propulsion, structure, and aerodynam-
ics [4] makes the modeling and control of AHVs an open problem 
that attracts much interest.

In the literature, several papers have been proposed to dis-
cuss the modeling of AHVs [4–6]. Chavez and Schmidt [4] uti-
lized Newtonian theory and shock expansion theory to establish 
a two dimensional analytical hypersonic aerodynamic model. In 
their work, the stability derivatives, derived from the longitudi-
nal dynamics of an AHV, indicated an unstable pitch mode and 
a coupled aerodynamics/propulsion/structure mode. To extend the 
work done by Chavez and Schmidt, Bolender and Doman [5] ap-
plied oblique shock and Prandtl–Meyer expansion theory to calcu-
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late the location of the bow shock and to determine the forebody 
pressure distribution. Lagrange’s equations were used to derive a 
first-order approximation of the flexible dynamics of the fuselage. 
The linearized system presented that the pitch and flexible dy-
namics are strongly coupled. Based on Bolender and Doman, the 
MASTrim (Michigan/Air force Research Laboratory scramjet trim) 
code [6] was proposed. The propulsion module of MASTrim was 
shown to agree with the experimental results.

The design of control systems for AHVs is a challenge due to 
the highly coupled dynamics. In the real flight of X-43A aircraft, a 
classical loop structure was adopted to design an angle of attack 
controller and a normal acceleration controller [3]. The classical 
controllers were gain scheduled as a function of Mach and angle 
of attack to acquire marginally stability. The adaptive control sys-
tem shows more robustness than the classical control system [7]. 
To verify an adaptive control law of AHVs, HiFIRE6 [1] will eval-
uate the stability and performance of an adaptive control system. 
Due to the slender geometries and light structures of the AHV, the 
aerothermoelastic effects on structural dynamics were accounted 
in a linear parameter varying (LPV) frame [8]. Inherently, the LPV 
controller was gain scheduled with the time varying operating pa-
rameters. Sigthorsson et al. [9] designed a robust servomechanism 
controller that does not need full-state feedback. The zero dynam-
ics of the pitch mode was stabilized by a simple dynamic com-
pensator. These linear controllers are inherently gain scheduled to 
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confirm the closed-loop stability. Advanced nonlinear methods that 
avoid gain scheduling are proposed. The main two nonlinear struc-
tures applied to hypersonic control are nonlinear dynamic inver-
sion (NDI) control and backstepping (BS) control. Wang and Stengel 
[10] gave the condition of input–output linearization of an AHV 
system. The stochastic robustness theory was adopted to optimize 
the feedback parameters. In Parker et al. [11], a canard was inter-
connected with the elevator to cancel the elevator-to-lift coupling, 
rendering the system minimum phase. Afterward, the LQR control 
was applied to design feedback gains for the integral augmented 
NDI control. What’s more, many other control strategies have been 
successfully combined with the NDI structure, such as the nonlin-
ear disturbance observer based control [12], the adaptive sliding 
mode based control [13], and the neural network based control 
[14]. As for the BS method, the main problem remaining in con-
ventional BS is “explosion of complexity”. Although the problem of 
“explosion of complexity” can be avoided by dynamic surface con-
trol [15] and command filters [16], Fiorentini et al. [17] applied 
the canard deflection to control the outer-loop and utilized the el-
evator deflection to control the inner-loop, resulting in low-order 
subsystems that do not need command filters. Zhang and Xian [18]
also proposed a BS strategy that considered a three inputs and 
three outputs system that avoids high-order time derivatives of the 
states.

Based on previous work, the motivation in this study is to apply 
linear theory to design a reduced-order NDI (RNDI) controller for 
a flexible AHV (FAHV). The canard included configuration [11,19]
was adopted to create low-order subsystems when applying the 
NDI control. With the feedback linearization, the nonlinear sys-
tems were transformed into low-order equivalent linear systems. 
We applied a pole placement technique [20] to design the feed-
back gains of the equivalent linear systems. Based on the pole 
placement technique, the genetic algorithm (GA) was used to opti-
mize the feedback gains. To avoid exciting the flexible modes, the 
equivalent bandwidth of the pitch angle controller is limited by the 
flexible dynamics and actuator dynamics. A nonlinear disturbance 
observer (NDO) was adopted to compensate the disturbances for 
the equivalent linear systems, while an adaptive damping term was 
designed for the pitch angle subsystem to maintain tracking per-
formance with respect to parameter uncertainties. For comparison, 
the conventional NDI (CNDI) [11] and the integral augmented RNDI 
are conducted and analyzed.

The main contributions of this paper are: (a) with an addi-
tional canard, the relative degree of the system is well defined 
without dynamic extension; (b) the pole placement technique is 
synthesized with the GA to design the feedback gains of the equiv-
alent linear system; (c) a guideline from the frequency domain is 
proposed for tuning the controller based on the equivalent linear 
system. The remainder of this paper is organized as follows: In 
Sec. 2, a nonlinear model of the FAHV is presented and the control-
oriented equations are obtained. The control design of the RNDI is 
proposed in Sec. 3. Section 4 discusses the pole placement tech-
nique and parameters optimization. Finally, simulation results and 
conclusions are presented in Sec. 5 and Sec. 6, respectively.

2. Model description

In this study, the longitudinal model of the FAHV is based on 
Bolender and Doman [5]. The model captures the structural, aero-
dynamic, and propulsion coupling. A free-beam model is adopted 
to represent the flexible dynamics. In the free-beam model, the 
coupling between rigid and flexible dynamics is through the aero-
dynamic forces. The Earth is assumed to be plat and the vehicle is 
normalized to unit depth. The longitudinal dynamic equations of a 
FAHV written in the stability axis coordinate system are

V̇ = (T cosα − D)/m − g sinγ (1)

ḣ = V sinγ (2)

γ̇ = (L + T sinα)/(mV ) − g cosγ /V (3)

θ̇ = Q (4)

Q̇ = M/I yy (5)

η̈i = −2ζiωi η̇i − ω2
i ηi + Ni, i = 1,2,3 (6)

The model comprises five rigid states x = [V , h, γ , θ, Q ]T and 
six flexible states η = [η1, η̇1, η2, η̇2, η3, η̇3]T , where V is the ve-
locity, h is the altitude, γ is the flight path angle, θ is the pitch 
angle, and Q is the pitch rate. The angle of attack is given by 
α = θ–γ . Based on Lagrange’s equations, η is derived from the first 
three bending modes of the free-beam model. The damping ratio 
of all flexible modes is ζi = 0.02. The control inputs [φ, δe, δc]T

and the regulated outputs [V , h, θ ]T form a three inputs and three 
outputs system, where φ is the equivalent fuel-to-air ratio, δe is 
the elevator deflection, and δc is the canard deflection. The control 
object is to asymptotically track the reference trajectories of ve-
locity, altitude, and pitch angel. The 50% fuel level [9] is defined as 
the nominal operating condition that has the parameters of vehicle 
mass m = 147.9 slug/ft, and modal frequencies ω1 = 21.17 rad/s, 
ω2 = 53.92 rad/s, and ω3 = 109.1 rad/s.

In the curve-fitted model, the lift L, drag D , thrust T , pitching 
moment M , and generalized forces Ni are given by

T ≈ q̄S
[
CT ,φ(α)φ + CT (α) + Cη

T η
]

L ≈ q̄SCL(α, δ,η)

D ≈ q̄SC D(α, δ,η)

M ≈ zT T + q̄Sc̄CM(α, δ,η)

Ni ≈ q̄S
[
Nα2

i α2 + Nα
i α + Nδe

i δe + Nδc
i δc + N0

i + Nη
i η

]
,

i = 1,2,3

(7)

where q, S , c, and zT are the dynamic pressure, reference area, 
mean aerodynamic chord, and thrust moment arm, respectively. 
The dynamic pressure is expressed as q = 1/2ρV 2, while the air 
density is given by ρ = ρ0 exp[−(h − h0)/hs]. The curve fitted ap-
proximations in Eq. (7) show that the coupling between the rigid 
and flexible dynamics is through the forces and moments. The 
aerodynamic coefficients are present by

δ = [δe, δc]T

CT ,φ(α) = Cφα3

T α3 + Cφα2

T α2 + Cφα
T α + Cφ

T

CT (α) = C3
T α3 + C2

T α2 + C1
T α + C0

T

CM(α, δ,η) = CM(α, δ) + Cη
Mη

= Cα2

M α2 + Cα
Mα + C δe

Mδe + C δc
Mδc + C0

M + Cη
Mη

CL(α, δ,η) = CL(α, δ) + Cη
L η

= Cα
L α + C δe

L δe + C δc
L δc + C0

L + Cη
L η

C D(α, δ,η) = C D(α, δ) + Cη
Dη

= Cα2

D α2 + Cα
Dα + C

δ2
e

D δ2
e + C δe

D δe + C
δ2

c
D δ2

c

+ C δc
D δc + C0

D + Cη
Dη

Cη
j = [ Cη1

j 0 Cη2
j 0 Cη3

j 0 ] , j = T , M, L, D

Nη
i = [ Nη1

i 0 Nη2
i 0 Nη3

i 0 ] , i = 1,2,3

(8)

where the numerical values of the curve-fitted coefficients and ve-
hicle parameters can be found in Fiorentini [21].
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