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A new computationally inexpensive attitude determination algorithm based on the minimization of 
Wahba’s loss function is presented in the paper. The estimation problem is converted into quaternion 
representation and solved with iterative prediction–correction scheme. Unlike Kalman filter approach, an 
iterative gradient optimization is used to estimate the attitude quaternion and gyroscope bias. Algorithm 
derivation is shown and its performance is tested. The presented case study assumes configuration 
with three types of sensors: Sun sensors with full angular coverage, a magnetometer and a MEMS 
rate gyroscope. Sensor model parameters are selected to mimic a pico or nano class satellite. Orbital 
environment is simulated with the Bouvier–Lyddane orbit model, the IGRF magnetic field model and 
geometric properties of the Earth–Sun system. Periodical loss of Sun sensor data due to eclipses is 
taken into account. Based on the presented case study a proposition of tuning procedure and a brief 
comment on algorithm stability are given. The tuning approach trades off estimate convergence versus 
noise rejection property. In a Monte Carlo test the proposed algorithm compares well against an EKF 
with an attitude error within 0.1 deg in sunlight and 0.4 deg in the eclipse. Finally, a simulation showing 
a possibility of operating the SDQAE algorithm while sampling each of the sensors at different rate is 
presented.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Spacecraft attitude estimation is one of the most challeng-
ing subjects in satellite guidance and navigation. Over the years 
many algorithms have been proposed. Approaches vary depend-
ing on the chosen attitude representation [1]. As proven by Euler 
in his rotation theorem, arbitrary rotation may be described by 
only three parameters. However, as pointed out by Stuelpnagel [2]
in order to achieve globally continuous and non-singular repre-
sentation of the rotation it is necessary to employ at least four 
components. There are some attitude determination algorithms 
based on singular, non redundant rotation representations. Mini-
mal representation Extended Kalman Filters (EKF) based on Euler 
angles [3], Rodrigues parameters [4], and modified Rodrigues pa-
rameters [5] have been proposed. Since Wahba formulated her 
least squares attitude determination problem, many algorithms, 
such as TRIAD [6], unconstrained least-squares [7], [8], Fast Op-
timal Attitude Matrix (FOAM) [9], Singular Value Decomposition 
(SVD) [10], and EKFs [11], [12] have been created to directly es-
timate the attitude matrix. Since attitude matrix has as many as 
six redundant components, quaternions became a popular way of 
representing attitude. Following Davenport’s Q-method solution to 
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Wahba’s problem which translates it to quaternion representation 
many quaternion algorithms have been proposed. Generally, they 
can be divided into two groups: those that solve the least-squares 
problem, and those based on minimum variance approach (Kalman 
filtering). The first group includes single-rate algorithms, for ex-
ample: QUEST [13] or ESOQ [14] and other relying on recursive 
strategy, like Extended QUEST [15]. The second group includes, but 
is not limited to: Multiplicative EKF [16] and Additive EKF [17]. Ad-
ditionally, there are some batch algorithms that rely on storing a 
certain number of past measured samples to improve the present 
estimate. An example of such an approach is BSEKF [18].

The following paper describes the Steepest Descent Quaternion 
Attitude Estimator (SDQAE) intended for satellite attitude determi-
nation. This recursive observer is based on a proposed reformula-
tion of Wahba’s problem in the quaternion space. The suggested 
solution is in the realm of optimization theory. The presented case 
study assumes availability of only three simple sensors (Sun sen-
sor, magnetometer and rate gyroscope). This configuration is com-
monly used on very small spacecraft where reduction of size, mass 
and power requirements of the measurement suite is essential. 
Interestingly, presented solution turns out to be both computation-
ally inexpensive and resilient against the periodical loses of sensor 
readings. It also allows performing each of the measurements at 
different rate, so that the more energy-consuming sensors can be 
operated less frequently. Inertia tensor estimate and attitude dy-
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namics model are not required, which may simplify design and 
implementation of the attitude determination subsystem.

The paper is organized as follows. Section 2 recalls underlying 
quaternion algebra concepts and introduces assumed conventions. 
In Section 3 the problem of attitude estimation is defined and an 
approach for solving it is presented. A case study is presented in 
Section 4 while Section 5 explains the estimator parameters tuning 
procedure. Results of Matlab/Simulink simulations are discussed in 
Section 6. Some remarks on observer convergence are presented in 
Section 7, and discussion of results and plans for future work are 
given in Section 8.

2. Basic concepts

A unit quaternion p
r q describing orientation of a frame rF rela-

tive to a frame pF is defined as follows:

p
r q = [

q1 q2 q3 q4
]� =

⎡⎢⎢⎢⎣
cos φ

2
−u1 sin φ

2

−u2 sin φ
2

−u3 sin φ
2

⎤⎥⎥⎥⎦ , (1)

where u = [u1 u2 u3]� is a unitary vector in the reference frame 
pF describing the rotation axis and φ is an angle of rota-
tion around that axis. Quaternion r

pq representing an opposite 
relationship is equal to conjugate of p

r q, namely p
r q∗ = r

pq =
[q1 −q2 −q3 −q4]� . A Hamiltonian quaternion product ⊗ can 
be used to express a transformation superposition, for example 
p
r q = s

rq ⊗ p
s q.

It is possible to express a vector rv defined in reference frame 
rF in the other reference frame pF using quaternion product. This 
calculation requires converting 3×1 vector rv to 4×1 quaternion 
rv by introducing 0 as the first element. Then the frame change 
can be calculated according to equation p v = p

r q∗ ⊗ rv ⊗ p
r q. While 

applying orientation quaternion algebra it is often necessary to 
perform normalization operation. Let us then define normalization 
operator ∦ · ∦ to simplify the notation of ∦ q ∦:= q/

∥∥q
∥∥.

3. Attitude observer

The algorithm proposed in this article is inspired by the ap-
proach presented in [19], although lacks most of the simplifying 
assumptions that can be made if the object does not move around 
the Earth with a significant velocity.

One of the classical formulations of spacecraft attitude estima-
tion is known as Wahba’s problem [20]. It is defined as finding the 
orthonormal matrix b

i A which minimizes the following objective 
function:

L(b
i A) = 1

2

n∑
j=1

a j

∥∥∥bd j − b
i Aid j

∥∥∥2
, (2)

where the orientation of the spacecraft body frame bF in relation 
to Earth Centered Inertial (ECI) frame iF is expressed with Direc-
tion Cosine Matrix (DCM) b

i A. A set of n direction measurements is 
considered, each of them is represented by 3×1 normalized vector 
in the Cartesian space. Those measurements are denoted as bd j
and expressed in the spacecraft body frame. They correspond to 
usually time-dependent reference directions id j taken from physi-
cal models or almanacs.

Let us introduce an equivalent problem, with orientation ex-
pressed in terms of quaternion b

i q instead of a matrix.

L(b
i q) = 1

2

n∑
j=1

a j
∥∥ f j

∥∥2 = 1

2

n∑
j=1

a j

(
f �

j f j

)
, (3)

where

f j = bd j − b
i q∗ ⊗ id j ⊗ b

i q. (4)

Problem (3) can be solved numerically with many known op-
timization methods. Perhaps the simplest one is the steepest de-
scent algorithm, where kth estimate b

i q̂k of orientation quaternion 
b
i qk is recursively improved based on its previous value b

i q̂k−1 ac-
cording to the equation:

b
i q̂k =∦ b

i q̂k−1 − K T S∇L(b
i q̂k−1) ∦ . (5)

It is worth noting that subscript k refers to iteration number 
as well as discrete-time instant index (tk = kT S ). Thus, only one 
iteration of optimization algorithm with step size dependent on a 
gain K is performed for each time period. This approach provides 
measurement noise filtering properties and considerably reduces 
computational burden. The gradient in (5) can be expressed as

∇L
(

b
i q̂

)
= ∂L(b

i q̂)

∂b
i q

= ∂

∂b
i q

⎛⎝1

2

n∑
j=1

a j

(
f �

j f j

)⎞⎠ . (6)

Using the formula for derivative of a product, one can write

∂

∂q

⎛⎝1

2

n∑
j=1

a j

(
f �

j f j

)⎞⎠ = 1

2

n∑
j=1

a j

(
f �

j
∂ f j

∂b
i q

+ ∂ f j

∂b
i q

�
f j

)
. (7)

After noticing that

f �
j

∂ f j

∂b
i q

= ∂ f j

∂b
i q

�
f j, (8)

one can simplify the equation (6) to:

∇L(b
i q̂) =

n∑
j=1

a j

(
∂ f j

∂b
i q

�
f j

)
=

n∑
j=1

a j

(
J�

j f j

)
, (9)

where J j is a Jacobian matrix.
Value of gain K is set as a result of a trade-off between noise 

rejection capabilities (lower values of K ) and convergence rate 
(higher values of K ). If the satellite angular velocity equals zero 
and no noise is present in measurement signals, the estimate con-
verges (with additional provisions – see Section 7). However, for 
a rotating satellite (5) cannot make the error decay asymptotically 
to zero. This goal may be achieved if a gyroscopic rate measure-
ment is available. Equation (5) can be then supplemented with a 
prediction term resulting from a kinematic differential equation

b
i
˙̂q = 1

2
b
i q̂ ⊗ bω, (10)

yielding the following formula obtained by the Euler discretization 
method

b
i q̂k =∦ b

i q̂k−1 − K T S∇L(b
i q̂k−1) + 1

2
T S(

b
i q̂k−1 ⊗ bωk) ∦ . (11)

The presence of the gyroscopic prediction term in (11) expands 
the range of admissible values for gain K . It eliminates the risk of 
convergence loss due to satellite spinning motion for small values 
of K .

In practice rate gyroscope measurements are biased. Integrating 
character of the prediction term (10) results in significant growth 
of the estimation error unless the bias is estimated and the es-
timate subtracted from the measured signal. To derive bias esti-
mation formula, let us substitute bωk in (11) with bωk + bek to 
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