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For spacecraft in formation flight, the knowledge on a reachable set for their relative motion is crucial 
as it can be used to 1) assess their operational capability and plan tasks accordingly, and 2) predict the 
operational boundary of neighboring spacecraft, from which the collision probability can be effectively 
monitored, improving the level of situational awareness. In this paper, a new approach for reachable 
set computation is proposed that computes accurate inner and outer approximations of the reachable 
set for a spacecraft’s relative motion with energy-limited low thrust. Finding the exact boundary of the 
reachable set requires solving an optimal control problem with infinitely many sets of initial and terminal 
conditions, which is intractable. To overcome this difficulty, an analytical solution to the optimal control 
problem is introduced, and an ellipsoidal approximation method is applied to the solution to find two 
inner and outer ellipsoids that approximate the exact boundary of the reachable set. The effectiveness of 
the proposed approach is demonstrated with illustrative numerical examples.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Due to the rapid advancement of autonomous spacecraft, many 
formation flying missions have become increasingly automated, 
enabling low-cost, highly efficient, and flexible operation of space 
assets. The use of these autonomous spacecraft in formation flight 
has introduced fundamental research problems such as forma-
tion keeping, reconfiguration, and collision avoidance, for which 
a plenty of work has been performed [1–3]. However, as forma-
tion flying missions and the corresponding tasks have become in-
creasingly complicated involving a growing number of spacecraft 
and thus had more stringent requirements, there has been a need 
for more advanced research that enables to develop smarter au-
tonomous spacecraft, having improved autonomy and intelligence.

As discussed in the 2015 NASA Technology Roadmaps [4], one 
of the key characteristics that the advanced autonomous space-
craft should possess is the capability of maintaining high-level 
cognitive awareness about the operational capabilities and limita-
tions of the spacecraft itself and its environment (e.g., neighboring 
space objects). This cognitive information is crucial especially for 
spacecraft in formation flight as it can be used for 1) intelligent 
mission planning: the spacecraft can autonomously evaluate the 
feasibility of assigned missions and, if necessary, re-plan the mis-
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sions, and 2) effective space situational awareness: the spacecraft 
can accurately predict the operational envelop of its environments 
(e.g., region reachable by an adjacent spacecraft in a cluster having 
maneuver capability), from which the collision probability can be 
monitored with the objective of collision avoidance. From this per-
spective, we aim to develop a methodology that improves the level 
of the cognitive awareness about the relative motion of spacecraft 
in formation flight.

In general, a system’s operational envelope can be effectively 
represented by reachable sets in the system’s state space, which 
denote all possible behaviors of the system given inputs and initial 
conditions and thus its boundary represents the limit of the sys-
tem’s operational capacity [5,6]. In control literature, research on 
reachable set computation has been extensively performed mostly 
based on optimal control theory, which requires finding the ex-
act or approximate solution of the Hamilton–Jacobi–Isaacs partial 
differential equation, resulting in various techniques applicable to 
certain types of dynamical systems (for an extensive literature re-
view, see [7] and references therein).

A few efforts have been also made to compute the reachable set 
for a spacecraft either by applying the existing techniques in con-
trol literature or devising new methods tailored to specific space 
applications. For example, Xue et al. [8] developed a method that 
computes an approximated upper bound on the reachable domain 
for a spacecraft capable of initiating a single impulse. In [9,10], 
Wen et al. also considered the motion of a spacecraft with a sin-
gle impulse and provided an accurate envelope of the reachable 
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set in three-dimensional space. Holzinger et al. [11,12] computed 
an operational range for an on-orbit spacecraft using Gauss’s varia-
tional equations and represented it using classical orbital elements. 
These approaches, however, are based on the spacecraft’s absolute 
motion about the Earth (i.e., the two body dynamics) and thus not 
directly applicable to the spacecraft’s relative motion. A couple of 
approaches have been proposed for reachable set computation for 
a spacecraft’s relative motion. Holzinger and Scheeres extended the 
existing reachability and optimal control theory to a class of non-
linear systems for cases where they have ellipsoidal initial sets 
[13,14], and applied them to various space reachable set compu-
tation problems including nonlinear relative orbital motion. Wen 
and Gurfil [15] proposed a method to compute a so-called rela-
tive reachable domain for a spacecraft’s relative motion given ini-
tial state uncertainties. HomChaudhuri et al. computed reach-avoid 
sets for spacecraft docking applications using hybrid system ap-
proach [16]. In [17,18], Lee et al. developed analytical solutions to 
stochastic reachable set computation that account for uncertain-
ties in initial sets and external control inputs. These approaches, 
however, also have limitations in the sense that 1) they are compu-
tationally expensive [13,14], or 2) they assume no external control 
[15], assume piecewise constant thrusts [16], or use probabilistic 
models for control input [17,18], which need to be modified for 
reachability analysis for cases where there exists external control 
with deterministic bound (which is the case in many practical sit-
uations).

In this research, we aim at developing a new reachable set 
computation method for spacecraft relative motion that can ac-
count for explicit bounds on energy of external control applied 
to a spacecraft, which can overcome the limitations of the afore-
mentioned approaches. In particular, we focus on continuous low-
thrust as the external control in the sense that, in many formation 
flying missions, low-thrust propulsion systems have been widely 
used due to their high specific impulse and thus high fuel effi-
ciency (see [1] and references therein). To achieve this goal, we 
first formulate the reachable set computation problem using opti-
mal control theory, resulting in an optimal control problem with 
infinitely many sets of initial and terminal conditions that need to 
be solved to find the exact boundary of the reachable set. Since 
finding the solutions of the optimal control problem for all the 
infinitely many boundary conditions is intractable, we propose to 
find inner and outer approximations of the reachable set, which 
can accurately and efficiently approximate the boundary of the 
reachable set without significant computational loads. To this end, 
we first derive an analytical solution to the optimal control prob-
lem, from which we observe an analytical structure that the cost 
function of the optimal control problem can be represented as a 
high-dimensional ellipsoid function of the initial and terminal con-
ditions. From this observation, we propose to apply an ellipsoidal 
approximation technique [19,20] that provides a systematical way 
to compute both inner and outer ellipsoids that approximate the 
solutions of the optimal control problem with the infinitely many 
initial and terminal conditions (i.e., the exact boundary of the 
reachable set).

The paper is organized as follows. In Sec. 2, the reachable set 
computation problem is mathematically formulated as an opti-
mal control problem, given relative motion dynamics and control 
bound. In Sec. 3, inner and outer approximations of the reachable 
set are derived using an analytical solution to the optimal con-
trol problem as well as an ellipsoidal approximation technique. In 
Sec. 4, the proposed approach is demonstrated with illustrative nu-
merical examples, and conclusions are presented in Sec. 5.

Fig. 1. Relative motion in the local-vertical-local-horizontal frame.

2. Problem formulation

2.1. Spacecraft relative motion dynamics

In this study, we consider the linearized relative motion of a 
deputy satellite with respect to a chief satellite that moves around 
the Earth in a near-circular orbit. Defining x(t), y(t), and z(t)
as the coordinates of the deputy’s position at time t relative to 
the chief in the local-vertical/local-horizontal frame (see Fig. 1), 
the relative motion is described by the well-known Hill–Clohessy–
Wiltshire (HCW) equations as [21]

ẍ(t) − 2nẏ(t) − 3n2x(t) = ux(t)

ÿ(t) + 2nẋ(t) = u y(t) (1)

z̈(t) + n2z(t) = uz(t)

where ux(t), u y(t), and uz(t) are the control input applied to the 
deputy; n = (μ/r3

c )1/2 is the mean orbital motion of the chief; rc(t)
is the orbital radius of the chief from the center of the Earth; μ is 
the gravitational constant of the Earth. By defining the deputy’s 
state vector x(t) and the control vector u(t) as x(t) = [r(t)T v(t)T ]T

and u(t) = [ux(t) u y(t) uz(t)]T (where r(t) = [x(t) y(t) z(t)]T and 
v(t) = [ẋ(t) ẏ(t) ż(t)]T are the position and velocity vectors, re-
spectively), the state-space equation associated to Eq. (1) is ob-
tained as

ẋ(t) = Ax(t) + Bu(t) (2)

where

A =
[

03×3 I3×3
A1 A2

]
, B =

[
03×3
I3×3

]

A1 =
[3n2 0 0

0 0 0
0 0 −n2

]
, A2 =

[ 0 2n 0
−2n 0 0

0 0 0

] (3)

Define ϒ(t) and �(t, t0) ≡ ϒ(t)ϒ(t0)
−1 as the fundamental matrix 

and state transition matrix associated to A, respectively. Then, it is 
well known that the solution of Eq. (2), given the initial condition 
x(t0) and control history u(t), is obtained by

x(t) = �(t, t0)x(t0) +
t∫

t0

�(t, τ )Bu(τ )dτ (4)

2.2. Reachable set

Note that the goal of this study is to compute the boundary of 
the set of all possible states (called the reachable set) of a spacecraft 
that can be reached by a continuous low-thrust propulsion, given 
1) a range of the initial state of the spacecraft, 2) an energy bound 
on the thrust, and 3) a constraint on maneuver time duration. In 
what follows, the range of the initial state and energy bound are 
discussed in detail, and the reachable set is formally defined.
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