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Aircraft point-mass equations of motion have been largely adopted to calculate optimal trajectories with 
local aerodynamic models, i.e. valid in a restricted domain. However, some optimal maneuvers may need 
aerodynamic models valid for a broader range of flight conditions. For this purpose, global aerodynamic 
models are attractive but their nonlinear structure can preclude obtaining optimal trajectories by an 
indirect method together with the point-mass equations of motion. To solve this impasse without 
resorting to direct methods the authors propose a new set of aircraft equations of motion. When 
compared to the point-mass equations, the proposed set permits the inclusion of the angular velocity 
in the evaluation of aerodynamic forces, making them more accurate. Another advantage of the proposed 
model over the point-mass one is that it allows a qualitative estimate of the control surface deflections 
after the trajectory is obtained, which enables to discard solutions with infeasible deflections. To verify 
consistency, the proposed equations of motion are compared by simulation to the point-mass and to the 
rigid-body equations. The use of the proposed set of equations is demonstrated by three optimizations of 
a 360◦ roll problem.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the indirect approach to the optimal control problem, the 
performance index is indirectly optimized by the solution of the 
boundary value problem (BVP) resulting from optimal necessary 
conditions. Some of these conditions require that the modeling 
functions of the aircraft to be continuous. In this context, non-
linear aerodynamic models derived from lookup table data using 
multivariate orthogonal functions [1–4] present at least two major 
advantages. The first is the globality, since an optimal maneuver 
typically does not remain close to a single operating point. The 
second is the analytical differentiability, required to satisfy the op-
timal necessary conditions of the indirect approach.

Ideally, optimal maneuvers should be evaluated with the rigid-
body equations to result in optimal control deflections. However, 
the use of this set of equations within the indirect method is a 
hard numerical task since the resulting boundary value problem 
has a high number of differential equations. In the literature there 
are a few results of trajectory optimization applying the rigid-body 
model and they are mostly limited to the motion contained in the 
vertical plane [5–7], reducing the number of differential equations 
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by half. The complete rigid-body equations were used by Fan et 
al. [8] to study time-optimal lateral maneuvers but they resorted 
to a direct method, which finds the optimal control by directly 
minimizing the performance index. To the best knowledge of the 
authors, this is the only publication with the complete rigid-body 
equations.

On the other hand, point-mass equations of motion have been 
largely used in trajectory optimization [9–20], including aerobatic 
maneuvers [21–24], mainly because of their reduced number of 
differential equations compared to the rigid-body model. Com-
bined with global aerodynamic models, however, some issues arise 
to satisfy the optimal necessary conditions and to accurately eval-
uate the aerodynamic forces. To fix that, the authors propose an 
intermediate model, suitable for the study of optimal maneuvers, 
that has a lower order compared to the rigid-body model while 
retaining better accuracy than the point-mass equations in the 
aerodynamics calculation.

This paper is structured as follows: Section 2 discusses the op-
timal control problem of interest and the corresponding BVP that 
results from the optimal necessary conditions. In Sec. 3 the F-16 
aircraft model is described. The aerodynamic model is then ana-
lyzed in Sec. 4 with the point-mass equations of motion within 
the presented optimal control problem and the issues are exposed. 
As consequence, a new set of equations of motion is proposed and 
compared by simulation to the point-mass and the rigid-body. To 
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Nomenclature

c.g. center of gravity
f state function

m number of control variables
n number of state variables
o number of final state constraints
R set of real numbers

s order of the equality constraint
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
u control
V airspeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ft/s
x state
Z

+ set of positive integers

exemplify the numerical application of the proposed equations of 
motion in maneuvering optimization, the complete roll around the 
longitudinal axis maneuver is optimized in Sec. 5.

2. Optimal control problem: the indirect method

Consider the optimal problem of finding the control history u :
[t0, t f ] →R

m that minimizes the following performance index:

J (u) ..= �(t f , x(t f )) +
t f∫

t0

L(t, x, u)dt, (1)

subject to a dynamic constraint on the state trajectory x : [t0, t f ] →
R

n:

ẋ = f (t, x, u), f : R1+n+m →R
n; (2)

an initial state condition at the given initial time t0:

x(t0) = x0, x0 ∈R
n; (3)

and a final state function constraint:

�(t f , x(t f )) = 0, � :R1+n →R
o, o ≤ n, (4)

where L(t, x, u) is the weighting function, �(t f , x(t f )) is the final 
weighting function, �(t f , x(t f )) is the fixed final function. Both �
and � are functions of the final state x(t f ), but the first one is 
to be optimized in the performance index, Eq. (1), whereas the 
second is to be satisfied in the final boundary condition, Eq. (4). In 
trajectory optimization, the state differential equations Eq. (2) are 
the so called equations of motion.

The indirect methods are based on the application of the calcu-
lus of variations to transform the optimal control problem formu-
lated above in a BVP. This way, a Hamiltonian H and an auxiliary 
function � are defined as:

H(t, x, u,λ) ..= L(t, x, u) + λ� f (t, x, u), (5)

�(t f , x(t f ),ν) ..= �(t f , x(t f )) + ν��(t f , x(t f )), (6)

where λ : [t0, t f ] → R
n is the costate and ν ∈ R

o are Lagrange 
multipliers. Then, the resulting necessary conditions are [25]: the 
stationarity condition

∂ H(t, x, u,λ)

∂u
= 0; (7)

the costate differential equation

λ̇
� = −∂ H(t, x, u,λ)

∂x
; (8)

the final costate condition

λ�(t f ) = ∂�(t f , x(t f ),ν)

∂x(t f )
; (9)

and an additional final condition if the final time t f is free

∂�(t f , x(t f ),ν)

∂t f
+ H(t f , x(t f ), u(t f ),λ(t f )) = 0. (10)

The stationarity condition, Eq. (7), applies while the control 
does not reach its boundaries. It is a particular case of the Pontrya-
gin Maximum Principle which states that the Hamiltonian must be 
minimized over the set U of all feasible control, i.e. u ∈ U ⊂ R

m

[25].
Summarizing, the indirect method approach to the optimal con-

trol problem must solve a BVP with: state differential equations, 
Eq. (2); state initial condition, Eq. (3); costate differential equa-
tions, Eq. (8); and final conditions, Eqs. (4), (9), and (10). Therefore, 
an intrinsic difficulty of the indirect method is that the resul-
tant BVP has twice differential equations than the dynamic sys-
tem being optimized. Another drawback is that one has to pro-
vide an initial guess to the algorithm that will solve numerically 
the BVP and this can be a difficult task, specially for the costate. 
Many researchers have tried to overcome this difficulty estimating 
the costate from direct methods, among which we mention the 
works by Stryk and Burlisch [26], Seywald and Kumar [27], Grimm 
and Markl [28], and Fahroo and Ross [29]. Rather than depend-
ing on direct methods results, Graichen and Petit [30] developed a 
methodology that begins in a simpler auxiliary problem where the 
costate is null and recursively transform it into the original prob-
lem.

It is worth noting that the optimal control problem stated in 
this section and applied in this paper produces only optimal open-
loop trajectories. To implement these trajectories in practice it is 
necessary to use them posteriorly as references to a closed-loop 
control.

2.1. Optimal control with equality constraint on a function of the state

Many times constraints must be included in the optimal control 
problem. They can be either equality or inequality, function of the 
control, or function of the state, or even function of the control and 
the state, among others types of restrictions. In this paper, only the 
equality constraint on a function of the state will be addressed, 
which is given by:

�(t, x) = 0, � : R1+n →R (11)

The following development is given by Bryson and Ho [25] and 
is reprinted here only for completeness. As the function � is not 
explicit on control u, successive time derivatives of � are held un-
til an explicit dependent expression is obtained. If s derivatives are 
needed, Eq. (11) is an equality constraint of sth-order. For Eq. (11)
to remain valid along time, it’s derivatives must also be null, there-
fore:

�(s)(t, x, u) = 0 (12)

Appending �(s)(t, x, u) (the sth time derivative of S) to the 
Hamiltonian:

H(t, x, u,λ,μ) = L(t, x, u) + λT f (t, x, u) + η�(s)(t, x, u) (13)

where η : [t0, t f ] →R is the Lagrange multiplier of the constraint.
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