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In this paper, a new Multi-Input Multi-Output (MIMO) Multi-model Predictive Control (MMPC) with 
direct adaptive structure is used for spacecraft attitude control in a wide range of operating points and 
maneuvers. Because of the highly nonlinear dynamics, the linearized model characteristics are extremely 
depended to the operating points. In such cases, an expected performance, in the wide range of the 
operating points, never can be achieved using a single controller and single model (even instability 
may be anticipated). To handle this problem, in this paper, we divide the whole operating range of the 
spacecraft to construct sub-models (model bank) using a mathematical tool called as gap metric. Next, 
an adaptive MPC based on sub-models is designed. In this procedure, there are two problems: stability 
when switching among models and the minimum number of sub-models. Hard switching among models 
to update the controller’s model causes extreme chattering on the control signal and reference tracking. 
The motivation of this paper is to present a new solution for the mentioned problems. To solve the first 
problem (remove chattering), an adaptive soft switching law to tune the controller parameters, when 
selecting new model, based on the Lyapunov theory is introduced as the main novelty of this paper. 
This guarantees the stability of the closed loop control system. For solution of the second problem, the 
number of optimal sub-models is obtained using different simulations. Finally, the effectiveness of the 
suggested method is proven via simulations.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

In highly nonlinear dynamic systems, getting an acceptable 
tracking performance in a wide range of the operating points is 
not feasible using a single controller based on linearization around 
an equilibrium point [1]. To make solvable, a criterion to analy-
sis the model variations and uncertainties is essential. Using this 
criterion, consideration of a valid area for a single controller can 
be possible. Nonlinearity measure criteria are well-known tools to 
describe the amount of the nonlinearity in nonlinear dynamic sys-
tems [2]. The significance of the problem has caused numerous 
researches for two decades [3,7]. In the literature, different defini-
tions for description of the nonlinearity have been presented. Most 
of them describe the distance of the nonlinear dynamics from the 
best linearized approximation [8,10].

The control of the lower nonlinear dynamics is possible using 
classical and simple controllers. On the other hand, highly nonlin-
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ear ones need advanced controllers. Multi-model predictive control 
(MMPC) is a feasible solution for tracking problem in highly non-
linear dynamics in the wide range of the operating points [1]. In 
[11], a bank of linear models (sub-models) is utilized to approx-
imate the nonlinear dynamic system and handle the nonlinearity. 
The significant benefits of this control strategy are simple devel-
opment of the sub-models, application in wide maneuvers and 
the robustness of the closed-loop control system. Literature [12]
handles model mismatches using multi-models for H-infinity con-
troller. The weak point of the mentioned reference is that there 
is no argument on how they select the operating points. In [13], 
a MMPC based on online estimation of the model is suggested. In 
this reference, the linear model is approximated using plant input–
output data in online mode. The MMPC based on the fuzzy weights 
is the matter of [14] to construct a suitable global linear model 
with fuzzy weights. Simple structure and time-consuming are the 
main features of [14]. In [15], a weighted MMPC (WMMPC) with 
lock-up table weights is designed to control Continuous Stirred 
Tank Reactor (CSTR). Then, the main control signal applied to the 
CSTR is the weighted summation of local controllers. Indeed, in the 
cases that the number of models and controllers are small, the ap-
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plication of this control method is possible due to the limitation on 
real time implementation. Although the reviewed literature claims 
on excellent performance which is inevitable, in all of them, there 
is no stability analysis on the closed-loop control system that is 
an unavoidable part of the control theory, especially for switching 
controllers which has common problem of chattering. The men-
tioned gap motivates this paper to survey the MMPC problem in 
the stability point of view. In this view, the motivation of the con-
trol of highly nonlinear dynamic systems which are instable with 
single MPC makes [16] to introduce a new soft switching MMPC 
(SS-MMPC). In this literature, the parameters of MMPC are tuned 
to avoid instability from switching between only two sub-models. 
Moreover, expanding the proposed strategy in [16] to cover the 
whole range of the operating points is an open area for research 
that is the aim of this paper.

On the other hand, the distance among sub-models and oper-
ating points to extract linear models are the subject of literature 
[17] and [18]. To do this, gap metric is a well-known nonlinearity 
measure tool to determine how many sub-models should be con-
sidered in the model bank construction [19,20]. The gap tools, in 
fact, determine the amount of changes in the frequency response 
of two linear models extracted from a nonlinear dynamic system 
under operating point variations. More details about the gap are 
given [21]. To determine the distance of the sub-models, usually a 
threshold for the gap is considered. As an excellent application of 
this criterion, in [17], the authors used different nonlinearity cri-
terion to partition the whole area of the pH neutralization process 
which in a well-known highly nonlinear dynamic system among 
control systems. Also, a sample work as [17] is done in [1] for hy-
personic vehicle system due to the considerable nonlinearity.

The large number of the sub-models will improve the tracking 
performance exponentially. On the other hand, a few sub-models 
cause losing tracking performance (even may cause instability in 
some cases). Thus, a discussion for the selection of the number 
of the sub-models appears in design of MMPC. Up to now, many 
researches, to find the answer of this question, has been done, 
but there is no clear answer for this problem [22–24]. In [25], a 
strategy for optimal model bank generation is presented which 
is a modification for [23]. The authors in [17] claims that they 
have introduced a new metric definition to deduce the number 
of sub-models and keep the performance of the control system si-
multaneously.

Consideration of the above gaps through MMPC, to control 
highly nonlinear dynamic systems, is the motivation of this pa-
per when focusing on spacecraft attitude control. In the attitude 
control, in addition to the robustness against model uncertainty, 
the anticipation of the control system accuracy with suitable set-
tling time is inevitable [26]. In literature, different control methods 
as sliding mode [27] to improve the robustness, adaptive control 
[28] to encounter with uncertainty and intelligence controller [29]
to learn and control the uncertain model have been proposed. 
Recently, due to the improvements of processors and ability of 
handling constraints, MPC has been applied to the attitude con-
trol problem [30]. The applications of MPC in the attitude control 
are the ability to handle different constraint such as quaternion 
constraint [31], keeping two spacecrafts in a special attitude for 
rendezvous mission [32] and also in the formation flying approach 
which a group of spacecrafts are controlled to have a pre-defined 
attitude [33].

In this paper, an adaptive soft switching MMPC (AMMPC) with 
direct structure is presented to control spacecraft nonlinear dy-
namics. In [1] (the main reference of this work), [17] and [18], 
there is no analysis about the stability of the closed-loop control 
system in the wide range of the operating points. Also, the op-
timal number of the sub-model is not given in [1]. To solve the 
mentioned gaps of [1,17] and [18], in this paper, we present the 

stability condition in the wide range of the operating points and 
the optimal sub-model numbers which together brings novelty.

The structure of this paper is as follows: in section 2, the space-
craft nonlinear dynamics is presented. Section 3 presents the con-
cepts of the gap metric. In this section, the gap metric is selected 
as a suitable tool to compare the amount of the nonlinearity for 
model bank construction. In section 4, the design procedure of 
the controller including model bank construction and the stability 
analysis is presented and then, the next section presents simula-
tion results. Finally, section 6 gives the conclusions.

2. Spacecraft nonlinear dynamics

This section gives briefly a description of the mathematical 
model of the spacecraft nonlinear dynamic. Using Euler equations, 
spacecraft dynamic equations in the body coordinate frame is

M = dH

dt
+ ω × H (1)

where ω = [ωx ωy ωz] is the angular velocity in the body coordi-
nate frame, H is the angular momentum and M = [Mx M y Mz]T is 
generated torque using control moment gyros (CMGs). In this pa-
per, we assume that applied torque is generated using CMGs. Also, 
with H = Iω, Eq. (1) can be written as:

ω̇ =
⎡
⎣ ω̇x

ω̇y

ω̇z

⎤
⎦ = I−1M − (

I−1ω
) × (Iω) (2)

here, I is the inertia matrix of the rigid body as:

I =
⎡
⎣ Ixx Ixy Ixz

I yx I yy I yz

Izx Izy Izz

⎤
⎦ (3)

Angular velocity in the inertial coordinate frame is written us-
ing transformation matrix between body and inertia coordinate 
frames:⎡
⎣ ϕ̇

θ̇

ψ̇

⎤
⎦ =

⎡
⎣ 1 sin ϕ sin θ

cos θ
cos ϕ sin θ

cos θ
0 cosϕ − sinϕ

0 sin ϕ
cos θ

cos ϕ
cos θ

⎤
⎦

⎡
⎣ ωx

ωy

ωz

⎤
⎦ (4)

Eqs. (2) and (4) give the spacecraft nonlinear state space model. 
In this model, X = [ωx ωy ωz ϕ θ ψ] is the state space vector and 
Y = [ϕ θ ψ] is the output vector to control.

3. The criteria for description of the model behavior

Metrics are attractive tools to compare the behavior of a non-
linear dynamic system in different operating points. In fact, the 
answer of “how much does variation of the operating point influ-
ence on the linear model reliability?” can be found using metrics. 
As we mentioned former, there are varieties in the definition of 
the metrics. In this paper, the gap metric is selected to compare 
the nonlinear model behavior in the wide range of the operating 
points.

3.1. The gap metric

The gap metric was firstly introduced in [21]. It was firstly used 
to survey uncertainty in feedback control theory. The gap metric is 
defined as:

Definition. There is a gap between two linear system K1 and K2

equal to

δ(K1, K2) = ‖ΠK1 − ΠK2‖ (5)
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