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Identification of the fluid dynamic mechanisms responsible for the formation of resonant tones in a cavity 
flow is challenging. Time-frequency non-linear analysis techniques were applied to the post-processing 
of pressure signals recorded on the floor of a rectangular cavity at a transonic Mach number. The 
results obtained, confirmed that the resonant peaks in the spectrum were produced by the interaction 
of a carrier frequency (and its harmonics) and a modulating frequency. High-order spectral analysis, 
based on the instantaneous wavelet bi-coherence method, was able to identify, at individual samples 
in the pressure–time signal, that the interaction between the fundamental frequency and the amplitude 
modulation frequency was responsible for the creation of the Rossier–Heller tones. The same technique 
was also capable to correlate the mode switching phenomenon, as well as the deactivation of the 
resonant tones during the temporal evolution of the signal.

© 2018 Published by Elsevier Masson SAS.

1. Introduction

The requirement for modern aircraft to have a reduced radar-
cross-section (RCS), as well as improved aerodynamic performance, 
has introduced the need to incorporate weapon bays in the de-
signs of the next generation of military aircraft. When the bay 
doors open, the flow in the weapon bay becomes highly turbu-
lent and unsteady, posing a hazard to any desired weapon release. 
Moreover, airframe and weapon can be damaged by the intense 
acoustic field that is developed by the flows, which can produce 
unsteady pressure levels of up to 170 dB at particular resonant 
modes. As shown by Rockwell and Naudasher [1], these phenom-
ena are strongly dependant on the geometry as well as on the free-
stream conditions. The frequencies, at which the resonance occurs, 
called Rossiter modes (from the pioneering work of Rossiter [2]), 
can be estimated, in compressible flow, using Heller and Bliss’s 
semi-empirical method [3]. Both the Rossiter and Heller methods 
were developed for rectangular cavities; however, these equations 
cannot predict the distribution of the modal amplitudes, which 
vary greatly depending on the flow condition and cavity geome-
try. Previous experiments relating to rectangular cavities of various 
depths have been conducted to study the unsteady fluctuations 
and to understand the physics behind the phenomenon. Tracy and 
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Plentovich [4] correlated the effect of geometrical parameters and 
Mach number to the sound pressure level (SPL) and overall sound 
pressure level (OASPL) distributions inside the cavity, while Ahuja 
and Mendoza [5] studied the effect of other parameters such as 
the boundary layer thickness at the cavity’s leading edge.

Whilst the basic assumption of the Rossier–Heller theory on 
resonating cavities is that the phenomenon is statistically station-
ary and composed of non-harmonic tones, more recent studies 
have revealed a more complex nature underlying the oscillating 
mechanism. Kegerise et al. [6] demonstrated that cavity flow is 
subject to non-statistically-stationary behaviour, in particular to 
what is called ‘mode switching’, i.e. a process whereby the domi-
nant energy shifts from one resonant tone to another as the signal 
evolves in time. Such behaviour was demonstrated by analysing 
the pressure histories using the time-frequency analysis capabili-
ties of the wavelet transform. Additionally, it was discovered that 
the flow is also affected by non-linearities, such as quadratic fre-
quency and phase coupling. These features appear in the frequency 
spectrum as additional peaks, accompanying the main Rossier–
Heller tones. Utilising high-order spectral analysis (HOSA), Kegerise 
et al. [6] classified such additional tones as the result of quadratic 
coupling between the principal tones. A subsequent study by Del-
prat [7] introduced a new model for the resonating mechanism, 
which explained the additional peaks as well as the main ones. It 
was observed that the Rossier–Heller tones could be interpreted 
as the result of a frequency shift (i.e. an amplitude modulation) of 
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Nomenclature

C p pressure coefficient
D cavity depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
f frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hz
fn Nyquist frequency ( f s/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . Hz
fr frequency resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hz
f s sampling frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hz
i imaginary unit
L cavity length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
M Mach number, characteristic modes of the signal in the 

Strouhal number domain
mn nth Rossiter–Heller mode
p static pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
q dynamic pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
St Strouhal number ( f · L/U∞)
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
U flow speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

W cavity width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
γ modulation parameter
δ boundary layer thickness . . . . . . . . . . . . . . . . . . . . . . . . . . mm
μ mean value
σ root mean square
ω angular velocity (2π · f ) . . . . . . . . . . . . . . . . . . . . . . . rad s−1

x̄ time averaged value of the discrete time series 
xn

(∑N
j=1 x j/N

)

X̂ discrete Fourier transform of the variable x
X∗ complex conjugate of the variable X
〈xn〉 expected value of the discrete time series 

xn

(∑N
j=1 x j/N

)
Abbreviations

BC bi-coherence
BP bi-phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
DFT discrete Fourier transform
FFT fast Fourier transform
FPL fluctuating pressure level . . . . . . . . . . . . . . . . . . . . . . . . . . . dB
GWSP global wavelet spectral power . . . . . . . . . . . . . . . . . . . . . . dB
HOSA high order spectral analysis
IWBC instantaneous wavelet bi-coherence
OAFPL overall fluctuating pressure level . . . . . . . . . . . . . . . . . . . dB
OASPL overall sound pressure level . . . . . . . . . . . . . . . . . . . . . . . . dB
PSD power spectral density
RCS radar cross section
SPL sound pressure level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dB
STFT short-time Fourier transform
WAVT wavelet average variance trend . . . . . . . . . . . . . . . . . . . . . dB
WSP wavelet spectral power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dB

Subscript

∞ freestream conditions

a frequency-modulated wave. Delprat [7] proposed the following 
equation for a generic Rossiter tone of nth order ( fn).

fn = (n − γ ) · [ fa ± k� f ] n = 1,2,3, . . . (1)

In Equation (1), fa is the fundamental frequency loop of the cavity 
(also called the ‘carrier frequency’), γ is the modulation param-
eter, or the ratio of the amplitude modulation frequency fb to 
fa , � f is the modulating frequency (which usually coincides with 
the lowest frequency peak in the spectrum), and k is an integer. 
From this supposition, Delprat [7] derived the pseudo-harmonic 
approximation. Hence, the Rossiter tones can be deduced from a 
knowledge of the carrier frequency, the modulating frequency, and 
the amplitude-modulation frequency.

One significant outcome of this model was the evidence of an 
amplitude-modulation mechanism of the fundamental frequency 
that acted as a frequency shifter and generated the non-harmonic 
Rossiter tones. It was also responsible for the mode switching 
phenomena with temporal variation of the parameter γ [7]. Ad-
ditionally, a very low frequency component, which in the past 
was considered the result of background noise, was identified as 
a true physical phenomenon. Kegerise et al. [6], using bi-spectral 
analysis observed that the fundamental frequency, fa , experienced 
amplitude modulation at the � f frequency, whilst frequency-
modulation behaviour was observed in the time-frequency anal-
ysis. Nevertheless, no significant coupling between the Rossiter 
modes and the � f frequency could be established; the same was 
true for the frequency shift operated by the amplitude modulator. 
As pointed out by Delprat [7], that was an expected outcome be-
cause frequency-based bi-spectral analysis cannot resolve FM/AM 
phenomena since no information is given regarding the temporal 
evolution of the coupling. The spectrogram itself has difficulties in 
analysing such complex phenomena since it cannot increase the 
resolution in time without losing resolution in frequency.

In this study, pressure histories were obtained from wind tun-
nel experiments on a simple rectangular cavity with a length-to-
depth ratio of five and at a Mach number of 0.81. Then, using 

Fig. 1. Transonic wind tunnel with side door removed; flow direction right to left.

wavelet analysis as the base transform for HOSA methodologies, 
the non-linear mechanisms proposed by Delprat’s model were ex-
plored.

2. Experimental setup

Experiments were performed in the closed-circuit, ejector-
driven, transonic wind tunnel, located at the Defence Academy of 
the UK at Shrivenham (Fig. 1). The tunnel has a working section 
500 mm long, 206 mm high and 228 mm wide. The air supply 
is provided by a Compair L110-10 compressor, dried, and stored 
in a 34 m3 reservoir. The wind tunnel is designed to operate in 
the Mach number range from 0.5 to 1.4, and is controlled, via 
a feedback mechanism, by the air inlet main control valve. At 
a working section Mach number of 0.81, and with a reservoir 
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