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Statistical evaluations of the aerodynamic performance changes due to the manufacturing variability 
for a turbine blade using the first order (FO) and second order (SO) sensitivities are presented in 
the paper. On the premise that the geometric variation at each scanning point on the blade meets a 
standard normal distribution, a modeling method taking into account the spatial correlations is used 
to produce the contour of geometric variations, the basis modes of which are extracted by principal 
component analysis. Then the geometric variations of any manufactured blades can be described by a 
series of random variables regarding as the weights of the basis modes. Calculations of the FO and SO 
sensitivities by using a continuous adjoint method are firstly introduced in detail. The sensitivities of 
mass flow rate and adiabatic efficiency of the turbine blade to a finite number of primary basis modes 
are then calculated and sensitivity validations are presented, revealing the significant improvements on 
performance evaluations by the SO sensitivities. Finally, the statistics of performance changes due to the 
manufacturing variability are evaluated by Monte Carlo simulations with different probability density 
functions given for the weights of basis modes. The results demonstrate that by the FO sensitivities, 
the performance exhibits almost linear changes versus the manufacturing tolerance, while by the SO 
sensitivities the nonlinear dependence of performance on the geometric variations can be accurately 
evaluated.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the design process for any engineering system, a simplified 
method by maintaining all the design parameters including the 
operation conditions, the geometric parameters, et al. as the cor-
responding nominal ones, is usually employed to make the design 
process tractable. However, it is well known that the uncertain-
ties of the design parameters always exist in the design process, 
which cannot be totally eliminated. Since realistic manufacturing 
processes limit the machining precision, the aerodynamic shape 
of the final manufactured blade inevitably deviates from the de-
signed one. The spatial distribution of such deviations depends on 
the machining process. For a number of manufactured blades, such 
functions of geometric variations follow certain statistical distribu-
tion.

Since the middle of last century, it has been well known 
that the geometric variations dramatically influence the aerody-
namic performance of turbocharger blades [1–3]. Since then, lots 
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of studies based on both experimental measurements and nu-
merical simulations have been reported [4–12]. The early studies 
on performance impact of manufacturing variability were carried 
out through experimental measurements, by which the effects 
of the random geometric variations on the performance changes 
were quantified. However, the experimental cost is extremely high. 
Due to the rapidly increased computing capabilities and the ad-
vanced numerical simulation techniques, computational fluid dy-
namics (CFD) were used for the studies at the beginning of this 
century. By the direct Monte Carlo simulations (MCS), Garzon et 
al. [4] successfully quantified the impact of geometric variations on 
compressor aerodynamic performance. In the past decade, lots of 
studies on performance impact of manufacturing variability based 
on experimental and numerical methods were reported [5–12]. 
Generally, by a direct CFD method, thousands of samples are nec-
essary for MCS, resulting in unacceptable computing resource re-
quirements, especially for the studies involving three-dimensional 
flow computations.

In order to reduce the computational cost for the studies of 
performance impact, the model method rather than the direct CFD 
method has been employed. For example, the polynomial chaos 
was employed by Lange et al. [7,8,12] to study the effects of de-
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sign parameter deviations on the performance of a high-pressure 
compressor stage. By using the model method, a large number of 
flow computations are required to determine the performance pa-
rameters of the training samples. Notice that compared with the 
geometry scale length of turbomachinery blades, the geometric 
deviations due to manufacturing variability are sufficiently small. 
Supposing the sensitivities of performance parameters to geomet-
ric variations are all known, the performance changes can be 
fast calculated by simply summating all the products of geomet-
ric variation and the corresponding sensitivity without any addi-
tional flow computations [13,14]. The adjoint method, introduced 
by Jameson [15] in the discipline of aerodynamics, has been widely 
used for sensitivity calculations due to its high efficiency in calcu-
lating the sensitivities. By the adjoint method, the solutions of the 
governing flow equations and the corresponding adjoint equations 
each only once are necessary to obtain the complete sensitivities 
for each performance parameter, regardless of the number of geo-
metric parameters.

The adjoint method was introduced to design optimization of 
cascades by Dreyer and Martinelli [16], Liu et al. [13,17] at the be-
ginning of this century. In the past decade, the adjoint method has 
become an active topic and has been widely used in the gradient-
based design optimization of turbomachinery blades [18–24]. The 
present authors have achieved sensitivity calculations by solving 
the adjoint equations for both the Euler and Navier–Stokes equa-
tions [20,21], and used them in the blade design optimization 
[20–23]. In recent years, the adjoint method was used for perfor-
mance uncertainty estimations in a quantity of literatures [25–29]. 
Once the sensitivities are determined, the performance changes 
can be fast calculated for an arbitrary number of manufactured 
blades within the tolerance. Giebmanns et al. [25] investigated the 
performance impact of geometric variations at the leading edge of 
a two-dimensional blade by using the adjoint method. Xiong et 
al. [27] and Yang et al. [28] evaluated the performance changes 
for mass flow rate and adiabatic efficiency of a multi-stage steam 
turbine by using the adjoint method. It was found that the perfor-
mance changes linearly depend on the manufacturing tolerance.

Tight manufacturing tolerances result in slight geometric vari-
ations, so that the performance parameters exhibit approximately 
linear variations versus the manufacturing tolerance. However, Gar-
zon et al. [4] demonstrated that the mean performance changes 
can be decomposed into two parts. The first part is dependent 
on the averaged geometric variations, while the second part is 
mainly caused by the nonlinear dependence of performance on the 
geometric variations. The studies by only the first order (FO) sen-
sitivities [25–28] can successfully capture the first part, while they 
will fail to capture the second part for the cases with large noise 
amplitude in the geometric variations. Moreover, tight manufac-
turing tolerance meaning high manufacturing cost is not always 
necessary because the aerodynamic performance may not be sen-
sitive to the geometric variations on some portions of the blade. 
In such cases, loose manufacturing tolerance can be assigned to 
reduce the manufacturing cost. The performance changes for the 
manufactured blades with both noise amplitude in the geomet-
ric variations and loose tolerance can be evaluated by the second 
order (SO) sensitivities. Meanwhile, even for tight manufacturing 
tolerances, evaluations of performance changes by the SO sensitivi-
ties can be improved in accuracy. So far, there is no open literature 
studying the performance impact of manufacturing variability on 
use of the SO sensitivities.

In the present study, quantifications of geometric uncertainty 
and the sensitivity-based estimations of performance uncertainty 
are briefly introduced. A modeling method is adopted to produce 
the spatial distribution of geometric variations. The quantifications 
of geometric uncertainty by the modeling method is illustrated 
for a turbine blade. Calculations of FO and SO sensitivities using 

a continuous adjoint method are firstly introduced by regarding 
a finite number of primary basis modes of the geometric varia-
tions as the geometric parameters. The adjoint sensitivities and 
the sensitivity-based performance evaluations are then compared 
with those obtained from the direct CFD method. The effects of 
the number of primary basis modes and the manufacturing toler-
ance on the performance changes are studied. Finally, with respect 
to different probability density functions given for the weights of 
basis modes to produce the manufactured blades, the correspond-
ing MCS-based statistical evaluations of the performance changes 
due to the manufacturing variability are performed. The results are 
presented and compared in detail.

2. Uncertainty quantification

2.1. Principal Component Analysis (PCA)

The geometric variations of the manufactured blades can be ob-
tained by directly scanning the products. PCA, which is essentially 
proper orthogonal decomposition (POD) [30] has been successfully 
used to extract the basis modes of the geometric variations [4,27], 
by which the most important manufacturing characteristics can 
be distinguished. On obtaining the scanned geometric variations, 
a scatter matrix X = (xij)m×n can be constructed, where m and n
are the numbers of manufactured blades and scanning points for 
each blade, respectively; xij is the discrepancy between the local 
geometric variation and the corresponding average. PCA can then 
be achieved by decomposing the autocorrelation matrix, R of the 
scatter matrix X by a singular value decomposition (SVD) method.

R = XT X = Q(���T���)QT (1)

where Q is the right matrix of eigenvectors of the scatter matrix 
X; ��� is the diagonal matrix of eigenvalues. The basis modes �, 
namely the principal components of the scatter matrix X are de-
termined by

� =���QT (2)

In principle, for any manufactured blade made from the same 
machine system, the geometric variations can be described in a 
weighted summation form of the basis modes.

x = x̄ +
n∑

i=1

siφi (3)

where x is the vector of geometric variations of the manufactured 
blade; x̄ is the vector of the averaged geometric variations; si is the 
weight of the i-th basis mode; n is the number of basis modes. 
Mentioned that in any discipline, usually a limit number of pri-
mary basis modes take almost the whole energy of the system, 
meaning that any state vector in the system can be approximately 
described by a series of primary basis modes. In such cases, only 
the effects of the primary basis modes on the system performance 
need to be studied in the eigenvalue problems.

2.2. Modeling of geometry uncertainty

Without a considerable number of manufactured blades, the 
modeling method used by Schillings et al. [31] and Papadimitriou 
et al. [32] is employed in the present study to describe the spa-
tial distribution of geometric variations. By the modeling method, 
the geometric variation of the i-th scanning point is described 
by a zero-mean random variable with the standard deviation σi . 
Then the zero-mean random vector, xg consisted of the random 
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