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Rendezvous and Proximity Operations (RPOs) of two autonomous spacecraft have been extensively 
studied in the past years, taking into account both the strict requirements in terms of spacecraft dynamics 
variations and the limitations due to the actuation system. In this paper, two different Model Predictive 
Control (MPC) schemes have been considered to control the spacecraft during the final phase of the 
rendezvous maneuver in order to ensure mission constraints satisfaction for any modeled disturbance 
affecting the system. Classical MPC suitably balances stability and computational effort required for online 
implementation whereas Tube-based Robust MPC represents an appealing strategy to handle disturbances 
while ensuring robustness. For the robust scheme, the computational effort reduction is ensured adopting 
a time-varying control law where the feedback gain matrix is evaluated offline, applying a Linear Matrix 
Inequality approach to the state feedback stabilization criterion. An extensive verification campaign for 
the performance evaluation and comparison in terms of constraint satisfaction, fuel consumption and 
computational cost, i.e. CPU time, has been carried out on both a three degrees-of-freedom (DoF) orbital 
simulator and an experimental testbed composed by two Floating Spacecraft Simulators reproducing a 
quasi-frictionless motion. Main conclusions are drawn with respect to the mission expectations.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Automated rendezvous and docking (RVD) missions have been 
widely studied in the last ten years. During these missions, con-
trolled trajectories, in which a Chaser spacecraft tries to reach and 
dock a Target spacecraft, are guaranteed by a control system, able 
to handle uncertainties and external environment disturbances. 
Different control techniques have been proposed in literature, in-
cluding feedback-linearization-based approach [1], Riccati equation 
techniques [2], sliding-mode control (SMC) [3], and other control 
setups in [4,5]. In [1] the problem of motion synchronization of 
free-flying robotic spacecraft and serviceable floating objects in 
space is considered, but a limitation of this approach is that the 
linear system can be different from the nonlinear one, due to the 
cancellation of nonlinearities. The Riccati equation techniques (as 
in [2]) are simple, numerically stable and competitive in compu-
tational effort with other known methods. However, only small 
parametric uncertainties are included. In [3] SMC strategies are 
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proposed for thruster control, even if it is deemed to lead to ex-
cessive fuel consumption, due to switching on/off thrusters at high 
frequency. Even if a fuel-efficient algorithm is proposed, a high 
consumption is verified to track the docking port. As clearly ex-
plained in [4], a model predictive control approach for spacecraft 
proximity maneuvering which could effectively handle the con-
straints on thrust magnitude, line-of-sight, and approach velocity, 
and can be more effective than other controllers in terms of fuel 
consumption.

For this reason, in this research, special attention has been re-
served to the adoption of MPC, for its ability to deal with the 
constraints that typically characterize this maneuver, both in terms 
of relative position and velocity, as well as actuation system limi-
tations. The approach proposed here moves along the lines of pre-
vious works employing MPC schemes for RVD. A Linear Quadratic 
MPC (LQMPC) has been adopted to enforce thrust magnitude lim-
itation, line of sight (LOS) constraints, and velocity constraints for 
soft docking in [6]. In [7], a low-complexity MPC scheme for three 
degree-of-freedom (DoF) spacecraft system is developed for the 
low-thrust rendezvous and proximity operations.

However, in all of these approaches, orbital perturbations, dis-
turbances, and model errors are not taken into account. In [8], 
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the improved performance of a robust MPC in the presence of 
disturbances, compared with a classical one, are highlighted solv-
ing the spacecraft rendezvous problem. In the last years, focusing 
on robust approach, a new appealing approach has been intro-
duced, called Tube-based Robust MPC (TRMPC), which focuses on 
two main goals: (i) the robustness to additive disturbances and 
(ii) the computational efficiency of a classical MPC. Moreover, this 
algorithm is split in two parts: (i) an offline evaluation of the con-
straints to ensure the uncertain future trajectories lie in sequence 
of sets, known as tubes, and (ii) the online MPC scheme applied to 
the nominal trajectories, representing the center of the tube itself 
as in [9].

The main ideas of this paper are to evaluate the performance 
of a robust MPC controller, both in simulations and on an exper-
imental setup, and to demonstrate the real-time effectiveness of 
the proposed robust approach. Moreover, this proposed MPC con-
troller is able to handle uncertainties due to external disturbances 
and additive noise, according to the recent trend in literature [10]. 
Starting from the approach proposed in [11], our idea is to evalu-
ate for the first time the performance of this controller within the 
space rendezvous scenario both in simulation, for a three degree-
of-freedom (DoF) orbital simulator, and in an experimental setup, 
i.e. in a three DoF air-bearing spacecraft testbed. Hence, a real-
time implementation of the TRMPC approach is here proposed to 
test the effectiveness of the controller on board.

In order to reach a reasonable computational effort for the ro-
bust approach, a time-varying control law is adopted where the 
feedback gain matrix is evaluated offline. A Linear Matrix Inequal-
ities (LMI) approach is applied to the state feedback stabilization 
criterion for the stability analysis and the evaluation of the feed-
back matrix. As explained in [12] and in [13], the proposed method 
improves the computational efficiency of a robust MPC even us-
ing low-thrust propulsion, typically adopted in the final phase of 
RVD maneuver, as in the proposed case-study. Furthermore, due to 
the presence of parametric physical uncertainties and discrepan-
cies between the mathematical model and the actual dynamics of 
the physical system in operation, as non linearities and neglected 
high-order dynamics, the LMI approach is able to reduce the com-
putational effort required by other robust controller, guaranteeing 
the stability of the system and improving real-time implementa-
tion feasibility. The modeled uncertainties are related to the model 
linearization of the Hill–Clohessy–Wiltshire (HCW) equations, in 
which the coupling between the position and speed variables and 
the quadratic terms related to the distance between the Target 
and the chaser are neglected. In detail, all the terms o(ρ2/R2)

are not considered, with ρ the distance between the two space-
craft and R the distance between the Target and the Earth [14]. 
Moreover, the uncertainties of the control matrix are related to 
the mass and inertia variation due to the fuel consumption. The 
LMI approach applied to the Edge Theorem, generalization of the 
Kharitonov Theorem, allows the offline definition of the feedback 
gain matrix, which is adopted to define the time-varying control 
law. Further information of both Edge Theorem and Kharitonov 
Theorem can be found in [16]. Finally, the robust TRMPC is com-
pared with a classical LQMPC in terms of computational cost, fuel 
consumption, and constraints satisfaction when the system is af-
fected by persistent bounded uncertainties. The LQMPC, proposed 
in this paper, was deeply validated in [15], in which a LQMPC and 
inverse dynamics in the virtual domain (IDVD) guidance methods 
are combined.

An extensive verification campaign, both in simulation and in 
an experimental testbed, has been accomplished to validate the 
performance of the TRMPC. Its compatibility for real-time imple-
mentation and constraint satisfaction has been verified when the 
system is affected by bounded additive disturbances. As said be-
fore, the simulations are carried out on a three DoF orbital simu-

lator. Instead, the experimental verification has been carried out 
using two spacecraft that float over a polished granite mono-
lith surface reproducing a quasi-frictionless motion in Spacecraft 
Robotics Laboratory at the Naval Postgraduate School [17].

The paper is organized as follows. In Section 2 and 3 the model 
setup, both of the simulation environment (three DoF) and of the 
experimental testbed are presented. The control objective and the 
system dynamics are explained in detail in Section 4. In Section 5
the MPC design is described, focusing on the theory of the TRMPC 
and how the concept of Tube is introduced and defined, accord-
ing to a constraint tightening approach. The simulation results 
obtained with the three DoF orbital simulator are presented in 
Section 6 while experimental results are described in Section 7, 
together with a comparison of the performance of LQMPC and 
TRMPC. Main conclusions are drawn in Section 8.

Notation: The notation employed is standard. Blackboard bold-
face letters (e.g., X) denote sets. Bold letters, e.g., uk =
[u0|k · · · uN−1|k], are used to denote the stack vector of N predicted 
values. Positive (semi)definite matrices A are denoted as A � 0
(A � 0), whereas negative (semi)definite matrices are denoted as 
A ≺ 0 (A � 0). The set I≥0 denotes the positive integers, includ-
ing 0. We use xk for the (measured) state at time k and xi|k for the 
state predicted i steps ahead at time k. A ⊕ B and A 	 B denotes 
the Minkowski sum and Pontryagin set difference, respectively.

2. Model of the translational three DoF relative orbital maneuver

The nominal relative motion of the two spacecraft in neigh-
boring orbits can be described through HCW linearized equa-
tions in the typical continuous-time state-space formulation as 
ẋ = Ax + Bu, where x = [x, y, z, ̇x, ẏ, ̇z] is the state vector repre-
senting the 3-position and 3-velocity components of the Chaser 
with respect to the Target in the local coordinate system (Local 
Vertical Local Horizontal (LVLH) frame), u = [Fx, F y, F z] is the con-
trol vector, expressed in the body reference frame, represented by 
the control force components applied to the spacecraft through the 
actuation system. As described in [18], the LVLH coordinate system 
is centered on the center of mass (CoM) of the Target and the axes 
are defined as follows: the X axis (Vbar ) is in the direction of the 
orbital velocity vector, the Y axis (Hbar ) is in the opposite direc-
tion of the angular momentum vector of the orbit, while the Z
axis (Rbar ) is radial from the spacecraft center of mass to the CoM 
Earth. The Chaser has the goal to arrive in the proximity of the Tar-
get vehicle, considering a V-bar approach within a cone corridor. 
A and B , the state and control matrices respectively, are defined 
as in [19] as a function of the angular velocity of the orbit (known 
and constant) with respect to the inertial frame ω0 and the wet 
mass of the Chaser mC V .

Due to the space environment, external disturbances in terms of 
forces and moments, such as the J2, the gravity gradient, and the 
solar radiation pressure, could affect the vehicle performance and 
drive the chaser to violate the constraints. If these additive noises 
are included in the spacecraft dynamics, the following continuous-
time uncertain system shall be considered

ẋ = Ax + Bu + B w w, (1)

where w is the vector of persistent noise, mainly related to the ex-
ternal environment and can be modeled as a random and bounded 
noise. In particular, the disturbance sequence is the realization of a 
stochastic process where w ∈ W is a random variable with known 
distribution, and the set W is a compact and convex set, contain-
ing the origin in its interior. Then, a discrete-time representation 
of system (1) is derived as follows

xk+1 = Adxk + Bduk + B wd wk, (2)
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