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In this paper, a robust controller is designed which is based on the eigenstructure assignment technique. 
With this technique, the physical modes of the system are decoupled by the appropriate shaping 
of the eigenvectors. While keeping the desired eigenvector structure as much as possible, Nelder–
Mead optimization algorithm is implemented for the search of the optimal robust solution. Different 
optimization cost functions are investigated in terms of eigenvalue sensitivity and stability robustness. 
Design solutions are compared with each other and with a fundamental solution in terms of robustness 
measures. Furthermore, a small amount of flexibility is included in the selection of the eigenvalue 
locations and the improvement in the robustness is evaluated by singular value analysis. The effectiveness 
of the control system is demonstrated with nonlinear simulations on the F-16 aircraft mathematical 
model.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Eigenstructure assignment is a well-studied MIMO control sys-
tem design technique. Several methods have been proposed over 
four decades. While some researchers [1] were more focused on 
robustness problem, others showed more interest in mode decou-
pling problem [2,3]. More recent papers [4–6] handled the control 
problem both in terms of mode decoupling and robustness. Sobel 
et al. stated that the problem should be defined as robustness im-
provement instead of robustness optimization [3]. This proposition 
follows the strict adaptation of eigenvector structure, such that the 
possibility of robustness optimization is not available.

In most of the studies, the stability robustness at the input 
(plant actuators) had been investigated in addition to the eigen-
value sensitivity [4]. Doyle suggested that evaluating the stability 
robustness in the input node is not sufficient and the designer 
should also put emphasis on the stability margins at the output 
node [7]. While evaluating the stability robustness, singular value 
theory had been employed and the use of return difference ma-
trix was introduced [8]. However, the stability margins computed 
from the return difference matrix found to be conservative and the 
inverse return difference matrix had been included in order to re-
duce the conservatism [9,10].
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This paper takes advantage of the previous techniques and 
searches for the optimal stability robustness of the control loops 
both in input and output nodes of the system. Several design alter-
natives are evaluated in order to demonstrate the improvement in 
stability robustness. The eigenvalue locations are also included in 
the optimization problem and the solution is acquired without vio-
lating the one step procedure. The measures of stability robustness 
are based on the stability margins of each control loop which are 
determined by the minimum singular value of the return differ-
ence matrix and the inverse return difference matrix. Robustness 
analysis are conducted with simplified second order sensor models 
while the simulations include the full sensor models. The resul-
tant feedback matrices are computed with the linearized lateral-
directional dynamic equations of the F-16 aircraft [11,12]. Finally, 
the effectiveness of the control laws is tested by roll rate tracking, 
bank-to-bank and snap roll maneuvers with nonlinear simulations.

2. F-16 aircraft model description

Aerodynamic model is based on wind tunnel test results of F-16 
at NASA Langley and Ames Research center. This database is valid 
for angle of attack values of −20◦ to 90◦ , angle of sideslip values 
of ±30◦ and the true airspeed values smaller than 0.6 Mach flight 
conditions [11].

Engine model has been created according to the studies in [12]. 
Engine model data is valid for true airspeed values smaller than 
1 Mach and pressure altitude values smaller than 15240 m.
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Nomenclature

A system matrix
B control matrix
K state feedback matrix
V right eigenvector matrix
Y left eigenvector matrix
ps stability axis roll rate
rs stability axis yaw rate
β sideslip angle
σ minimum singular value
ci eigenvalue sensitivity
κ2(V ) condition number of the matrix V
N null space
MDREA mode decoupling robust eigenstructure assignment
CSAS control and stability augmentation system

LQR linear quadratic regulator
NM Nelder–Mead
α angle of attack
∅ roll angle
θ pitch angle
ψ yaw angle
μ bank angle
γ flight path angle
χ heading angle
δe elevator deflection
δa aileron deflection
δr rudder deflection
δLEF leading edge flap deflection

Table 1
Actuator model parameters.

Control Position limit Rate limit Time constant

δe ±25◦ 60◦/s 0.0495 s
δa ±21.5◦ 80◦/s 0.0495 s
δr ±30◦ 120◦/s 0.0495 s
δLEF 0.25◦ 25◦/s 0.136 s

Fig. 1. Reference frames of F-16 aircraft.

Control surface actuators are modeled according to the param-
eters given in Table 1.

Leading edge flap actuator is modeled in an open loop struc-
ture. The leading edge flap position is scheduled with angle of 
attack and true airspeed. Reference frames are illustrated in Fig. 1.

Transformation among the reference frames can be stated as 
following.

F O
χ,γ ,μ−−−−→ F w

−β−−→ F S
α−→ F B ↔ F O

ψ,θ,φ−−−→ F B

The full sensor dynamics for output measurement in a typical 
flight control application are defined in [13]. Computation delay 
is taken as 10 ms and transformed into Laplace domain with 2nd 
order Pade approximation.

Gair_data_sensor(s) = 1/(1 + 0.02s)

Gatt_sensor(s) = 1/(1 + 0.00323s + 0.00104s2)

Grate_sensor_notch(s) = (
1 − 0.005346s + 0.0001903s2)

/
(
1 + 0.03082s + 0.0004942s2)

Ganti_aliasing(s) = 1/
(
1 + 0.00398s + 0.0000158s2)

GAD_converter(s) = (1 − 0.00208)/(1 + 0.00417s)

Gdelay(s) = (
1 − 0.0017s + 8.33 · 10−6s2)

/
(
1 + 0.0017s + 8.33 · 10−6s2)

Gaveraging(s) = (1 − 0.00208)/(1 + 0.00417s)

Gnoise(s) = 0.05/
(
1 + 0.0089 + 0.00042s2)

× (
0.053s/(1 + 0.053s)

)
Gair_data(s) = Gair_data_sensor(s)Ganti_aliasing(s)GAD_converter(s)

× Gdelay(s)

Gatt(s) = Gatt_sensor(s)Ganti_aliasing(s)GAD_converter(s)Gdelay(s)

Grate_1(s) = Grate_sensor_notch(s)Gaveraging(s)GAD_converter(s)

× Gdelay(s)

Grate(s) = Grate_1(s)/
(
1 − Grate_1(s)Gnoise(s)

)
Gdef (s) = 5.17 · 10−6/(1 + 0.0032s + 5.17 · 10−6s2)

3. Eigenstructure assignment

Eigenstructure assignment is a linear control technique, which 
places the closed loop poles into desired locations; in addition, 
for multi input systems it also gives the designer a flexibility to 
manipulate the corresponding eigenvectors. For a linear time inde-
pendent system with n states and m control inputs (m < n), the 
designer can arbitrarily assign the m elements of the each eigen-
vector [2].

3.1. Mode decoupling eigenstructure assignment

Physical modes of the dynamic systems can be decoupled from 
each other by canceling out the cross-coupled terms in each eigen-
vector [3,5].

Two symbolic examples are demonstrated below where x1,

. . . , x4 are the states and v1, . . . , v4 are the corresponding eigen-
vectors of the closed loop system (m = 2).
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