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This study presents a sub-optimal feedback control that implements real-time collision avoidance for 
spacecraft in proximity operations. The penalty function for avoiding collision with obstacles is first 
incorporated into the performance index of a typical optimal tracking problem. Then, the infinite-horizon 
feedback control law is derived by employing generating functions in the framework of discrete-time 
Hamilton–Jacobi theory. The derived control law, which is an explicit function of the reference states 
and instantaneous positions of obstacles, allows active spacecraft to avoid collision in real-time. The 
proposed approach has advantages over conventional optimal collision avoidance approaches in that it 
does not require iterations with initial guesses, repetitive shooting-based process for multiple boundary 
conditions, and/or trajectories of obstacles to be known a priori. Numerical simulations demonstrate that 
the proposed algorithm with a properly designed penalty function is suitable for implementing optimal 
collision-free transfers in real-time.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

With gradually expanding space industry, spacecraft and their 
operations have been diversified. Especially, operating multiple 
small spacecraft has been actively studied as it can implement 
challenging missions such as 3-D mapping and measurements of 
the gravitational and magnetic fields with operational efficiency 
and configurational flexibility. As a key technology for safe opera-
tions of multiple spacecraft, various collision avoidance algorithms 
have been developed. Previous approaches for optimal collision 
avoidance maneuvers are usually based on direct optimizations 
[1,2]. They can implement optimal collision avoidance maneuvers 
by applying inequality constraints, but usually require iterative 
procedure with initial guesses and trajectories of obstacles to be 
known a priori. In order to reduce computational loads of di-
rect optimizations, the model predictive control (MPC) has been 
adapted for optimal collision avoidance maneuvers [3–5]. MPC can 
reduce computational efforts because it obtains a solution based 
on the direct optimization over a receding horizon, but it still re-
quires an iterative procedure with an initial guess at every time 
when obtaining a solution. If the performance of an onboard com-
puter is limited, the indefiniteness due to the initial guess and it-
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erative procedure in the direct optimization approach might tackle 
real-time implementation. Focusing on the robustness, some stud-
ies use gradient of Lyapunov-type function to avoid collision [6–8]. 
They can apply trajectories of obstacles in real-time without repet-
itive calculation and initial guess, but they usually do not consider 
the optimality of collision avoidance maneuvers.

In recent years, the generating function appearing in the 
Hamilton–Jacobi theory has been used to implement optimal 
tracking and collision-free transfers in spacecraft formation flying 
[9–13]. The continuous-time generating function was employed to 
obtain a sub-optimal collision-free trajectory by incorporating the 
penalty function into the performance index for an optimal trans-
fer [13]. Unlike many indirect methods using the penalty function 
[14,15], the approach proposed in Lee et al. [13] allows us to derive 
the sub-optimal feedback control law for finite-time collision-free 
transfers without iterative procedure and initial guess. However, it 
requires trajectories of obstacles to be identified in advance; the control 
law obtained from Lee et al. [13] does not work, in general, if the 
trajectories of obstacles change from the expected one or are not 
completely known a priori.

Given the above statements, the main technical originality and 
contribution of this research is summarized as follows: As an alter-
native method for implementing the optimal collision-free transfer 
in real-time, this study proposes to employ the recently devel-
oped infinite-horizon optimal tracking scheme in the framework of 
discrete-time Hamilton–Jacobi theory [12]. Assigning the reference 
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Fig. 1. Contours of the original penalty function (left) and approximated penalty function by the Taylor series expansion about a zero nominal solution (right).

states to independent variables, this scheme can derive an infinite-
horizon optimal tracking control law as an explicit form of the 
reference states. Thus, incorporating the penalty terms for avoid-
ing collision with obstacles into the tracking performance index, 
and assigning the reference states and positions of obstacles to 
independent variables, we derive the feedback control law for op-
timal collision-free transfers as an explicit function of the reference 
states and positions of obstacles. Compared with conventional op-
timal collision avoidance approaches, the proposed approach does 
NOT require iterations with initial guesses, repetitive shooting-based 
process for multiple boundary conditions, and/or trajectories of ob-
stacles to be known a priori.

The rest of this paper is organized as follows. The sub-optimal 
collision avoidance problem is first formulated in discrete-time do-
main. Then, the procedure for deriving the infinite-horizon control 
law for optimal collision-free transfers is constructed. Simulations 
follow for the control law to demonstrate the validity of the pro-
posed approach. Finally, conclusions are drawn.

2. Infinite-horizon optimal collision-free control law employing 
discrete-time generating functions

The optimal collision-free transfer with continuous-thrust con-
trol can be formulated in continuous-time domain as follows:

Minimize

J = 1

2

t f∫
t0

uT udt (1)

subject to general nonlinear equations of motion in affine form 
with rendezvous-type boundary conditions and inequality con-
straints for circumventing obstacles

ẋ = f(x, t) + g(x, t)u, x(t0) = x0, x(t f ) = x f ,∥∥r − ro,i
∥∥ ≥ dmin,i, i = 1, · · · , s

(2)

where x ∈ Rn×1 and u ∈ Rm×1 are the state and control vectors 
of active spacecraft, respectively, and r and ro,i are the position 
vectors of active spacecraft and the i-th obstacle, respectively. s is 
the number of obstacles, and dmin,i is the desired minimum rel-
ative distance from the center of the i-th obstacle. To implement 
a collision-free transfer in real-time based on the infinite-horizon 
control scheme proposed in [12], the above problem is reformu-
lated as an optimal tracking problem in discrete-time domain as 
follows:

Minimize

J = 1

2
(xN − xr)

T Q (xN − xr)

+
N−1∑
k=0

[1

2
(xk − xr)

T Q (xk − xr) + uT
k Ruk + P ]

(3)

subject to discrete-time nonlinear equations of motion in affine 
form with initial conditions

xk+1 = fd(xk, tk) + gd(xk, tk)uk, x0 is given (4)

where tk and xk are time and states at the k-th step, respectively, 
and Q ∈ Rn×n and R ∈ Rm×m are weighting matrices. fd and gd are 
obtained by discretizing f and g, respectively. xr is the reference 
states, which is defined as the unconstrained optimal solution minimiz-
ing Eq. (1) without the inequality constraints. P is the penalty function 
to indirectly assign the forbidden region for collision-free maneu-
vers.

The above discrete-time optimal tracking problem can be trans-
formed into a two-point boundary value problem of states and 
costates for a discrete-time Hamiltonian system [11,16]. Then, 
the infinite-horizon control law can be derived by employing the 
discrete-time generating function of the second type, F2 [12]. 
F2 can be obtained by recursively solving the discrete-time 
Hamilton–Jacobi equation after the Hamiltonian is approximated 
as a Taylor series about a nominal solution. (Again, no repet-
itive or iterative process lies in developing the F2 generating 
functions!) In the previous studies employing the generating func-
tions, the nominal solution is usually defined as an equilibrium 
solution such as the origin of the coordinates for a double inte-
grator. However, fixing the nominal solution as an equilibrium solution 
might lead to undesired poor approximation and thus fail to avoid col-
lision; the series expansion of (highly nonlinear) penalty function 
sufficiently approximates the original penalty function only quite 
near the nominal solution. As an example, Fig. 1 shows the con-
tours of the approximated penalty function by Taylor expansion, 
where the original penalty function is defined as 1/‖r − ro‖4 with 
ro = [2.85,2.85]T m. The approximated penalty function about a 
zero nominal solution is expanded as Taylor series up to the sec-
ond order as follows:

4xo

‖ro‖6
x + 4yo

‖ro‖6
y + 24xo yo

‖ro‖8
xy

+ 1

2
x2(

24x2
o

‖ro‖8
− 4

‖ro‖6
) + 1

2
y2(

24y2
o

‖ro‖8
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) (5)
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