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In the present work, a nonlinear system identification strategy is proposed which is based on the series 
connection of a recurrent local linear neuro-fuzzy model (NFM) and a multilayer perceptron (MLP) neural 
network. The NFM with output feedback is initially used for multi-step ahead predictions, whereas 
the MLP neural network is a posteriori employed to perform a nonlinear quasi-static correction of 
the NFM’s time-series response. The novel identification approach is utilized exemplarily as a reduced-
order modeling (ROM) technique to lower the computational effort of unsteady aerodynamic simulations, 
although the approach is generally applicable to any nonlinear identification task. In order to demonstrate 
the method’s fidelity for unsteady aerodynamic modeling, the NLR 7301 airfoil is investigated at transonic 
flow conditions, while the motion-induced aerodynamic forces are considered in particular. Therefore, the 
pitch and plunge degrees of freedom are simultaneously excited via forced motions to obtain the training 
data for model calibration, while the respective aerodynamic response is computed using a computational 
fluid dynamics (CFD) solver. The sequential nonlinear identification process as well as the generalization 
of the resulting model is presented. Besides, a Monte-Carlo-based training procedure, which is novel 
in the context of aerodynamic reduced-order modeling, is introduced to estimate statistical errors. It is 
shown that the essential linear and nonlinear system characteristics are accurately reproduced by the 
new approach compared to the full-order solution. Moreover, by examining the results in comparison 
to established ROM methods it is indicated that the connected neural network approach leads to an 
enhanced simulation and generalization performance.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the last decades, significant progress has been made in the 
research fields of system identification and model-order reduc-
tion, which is of tremendous importance for many scientific and 
engineering applications. In general, identification approaches are 
employed to obtain a mathematical model by processing known 
input/output data of the underlying system, whereas the objective 
of reduced-order models (ROMs) consists in lowering the computa-
tional effort or the memory requirements with respect to the solu-
tion of known equations. Nonetheless, black-box system identifica-
tion can be also applied to realize a model-order reduction [1–3], 
which is the methodology followed in this work. Linear systems 
as well as their identification have been extensively studied and 
can be considered nowadays as well understood [4]. In contrast, 
the analysis and identification of nonlinear systems still remains a 
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challenging task [5,6]. As the homogeneity and additivity principles 
can not be applied in general, the response becomes amplitude-
dependent which may lead to bifurcations [7], limit-cycle oscil-
lations (LCOs) [7–9], or even a chaotic behavior of the system 
[6]. Furthermore, instability of the identified nonlinear models is 
frequently encountered for time-marching simulations (multi-step 
ahead predictions) due to the output feedback and associated error 
accumulations [4,5]. For specific applications, the identified model 
may be also expected to reproduce both linear and nonlinear sys-
tem characteristics depending on the operating regime, frequency 
bandwidth, and/or amplitude range. Hence, a variety of algorithms 
and approaches have been developed to cope with the difficulties 
of nonlinear function approximation and nonlinear identification. 
In the following, without any claim to comprehensiveness, some 
important nonlinear identification methodologies are recapitulated.

Historically, the convolution integral and impulse response ap-
proaches known from linear systems have been extended yielding 
for example the well-known Volterra series models [6,10]. How-
ever, the determination of the higher-order kernels becomes ex-
haustive which restricts the application of Volterra-series-based 
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Nomenclature

ANN Artificial neural network
APRBS Amplitude-modulated pseudo-random binary signal
ARMA Auto-regressive with moving average
ARX Auto-regressive with exogenous input
CFD Computational fluid dynamics
LA Large-amplitude
LCO Limit-cycle oscillation
LLM Local linear model
LM Levenberg–Marquardt
LOLIMOT Local linear model tree
MC Monte-Carlo
MISO Multiple-input single-output
MLP Multilayer perceptron

MUSCL Monotonic-upstream-scheme-for-conservation-laws
NARMAX Nonlinear auto-regressive moving-average with ex-

ogenous inputs
NARX Nonlinear auto-regressive with exogenous input
NFM Neuro-fuzzy model
NLR Netherlands aerospace center
POD Proper orthogonal decomposition
PRBS Pseudo-random binary signal
RANS Reynolds-averaged Navier–Stokes
RBF Radial basis function
ROM Reduced-order model
SA Small-amplitude

models to weakly nonlinear problems [11]. Besides, block-oriented 
models such as Wiener and Hammerstein models or their respec-
tive permutations have been widely employed by numerous au-
thors [5,6]. Thereby, a linear dynamic block is followed or preceded 
by a nonlinear static function approximation block. Nonetheless, 
block-oriented models must fit to the underlying structure of the 
investigated system, e.g., exhibiting linear dynamic dependencies 
only. Hence, they cannot be utilized for any general nonlinear 
identification purpose. Subsequently, approaches based on neural 
networks such as the multilayer perceptron (MLP) neural network 
[12,13,5] or the radial basis function (RBF) neural network [14,5] as 
well as Kriging interpolation [15] have been devised. They perform 
a nonlinear mapping from provided input/output data sets and 
can, therefore, be applied to identification tasks. Although neural 
networks are powerful tools for accurate, high-dimensional predic-
tions, they are prone to simulation instabilities due to their func-
tion extrapolation characteristics [5]. The approximation of non-
linear functions by means of piecewise linear models, i.e., several 
blended linear models which are active in limited regimes of the 
model input space, is another possible approach followed by var-
ious researchers [5,6]. A popular method from this branch is the 
local linear model tree (LOLIMOT) algorithm that can be employed 
for the estimation of a local linear neuro-fuzzy model [5,16].

Focusing on aerospace applications in particular, which con-
stitute the intrinsic motivation of the present research, compu-
tationally involved investigations such as multidisciplinary design 
optimizations and aeroelastic analyses must be performed. There-
fore, efficient and accurate methods are required to obtain the 
unsteady flow-induced forces caused by gust loads or self-excited 
motions [17,1]. In this regard, the system embodied by the Eu-
ler or Reynolds-averaged Navier–Stokes (RANS) equations is to a 
large extent well-understood and a priori known. However, due 
to the high-dimensional parameter space spanned for instance by 
different freestream conditions, configuration set-ups, and excita-
tion frequencies, the effort of comprehensive computational fluid 
dynamics (CFD) simulations is still not manageable using the cur-
rently available computing capacities. For this reason, CFD-based 
training data are exploited by means of linear or nonlinear identi-
fication techniques to obtain a reduced-order model of the aerody-
namic system. Following this methodology, the unsteady aerody-
namic forces can be obtained with sufficient accuracy, whereas the 
ROM-based simulations are carried out within a fraction of time 
compared to the full-order CFD solution process [16,18]. Recently, 
active research efforts led to several ROM concepts related to fluid–
structure interaction (FSI) problems and unsteady aerodynamic ap-
plications. In the following, a brief summary of the context-related 
identification methodologies is given.

Various unsteady aerodynamic ROM methods originating from 
linear identification principles are proven to yield accurate and re-
liable results for small structural perturbations, i.e., for a linear 
relation between the flow quantities and the excitation. Examples 
are the eigensystem realization algorithm [19] applied by Silva and 
Bartels [20] as well as Fleischer and Breitsamter [21], the auto-
regressive with moving average (ARMA) model utilized by Raveh 
[22], and the auto-regressive with exogenous input (ARX) model of 
Zhang and Ye [23]. Furthermore, approaches based on the proper 
orthogonal decomposition (POD) [24] have been proposed by Hall 
et al. [25], Lucia et al. [26], and Iuliano and Quagliarella [27]. The 
fundamental idea of the POD-based methods is a reduction of the 
system’s degrees of freedom by extracting a comparatively small 
set of POD modes based on steady or unsteady flow field data. In 
order to capture the dynamics of large amplitude motions, varying 
freestream conditions, or separated flows, a nonlinear aerodynamic 
identification is required for accurate analyses. Even with state-of-
the-art approaches, however, this is still challenging and often a 
non-robust task. Many nonlinear models that are based for ex-
ample on MLP neural networks [28,29] or RBF neural networks 
[30–32] have been successfully applied to reproduce the dominant 
aerodynamic characteristics. Moreover, ROMs based on Kriging in-
terpolation have shown the ability for accurate air load prediction 
[33]. The aforementioned nonlinear-function-approximation-based 
methods exhibit a high precision with respect to one-step pre-
diction problems. However, multi-step ahead predictions often be-
come unstable due to the feedback of the model outputs [4,31,34]. 
The methodologies for unsteady aerodynamic applications pro-
posed by Winter and Breitsamter [16,35] use a neuro-fuzzy model 
instead, which is less prone to simulation instabilities due to the 
use of local linear sub-models. Moreover, the NFM based on the 
LOLIMOT algorithm has been successfully applied for aeroelastic 
predictions across a range of freestream conditions. Additionally, 
combinations of the POD with nonlinear identification approaches 
have been introduced by Lindhorst et al. [36] as well as Winter and 
Breitsamter [18] in order to gather information about the time-
varying surface pressure distribution in contrast to solely consid-
ering integral forces and moments. Nonetheless, local linear NFMs 
are not very accurate if the system is governed by strong non-
linearities or if both linear and nonlinear behavior needs to be 
captured with a single model. Recently, Kou et al. [34] and Kou 
and Zhang [37] suggested the use of Wiener-type models and lay-
ered ROMs to obtain models valid for small and large amplitude 
motions. Considering the current diversity of approaches, a major 
drawback is still maintained. Either the investigations are limited 
to linear dynamic effects by means of a restricted model structure, 
or the models are likely to become unstable.
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