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This paper is concerned with nonlinear Kalman filtering approach to aircraft engine gas path analysis 
with measurement uncertainty. The uncertain measurements are characterized by time delay and packet 
dropout. The delay step of physical parameters occurs randomly, and its probability is regulated by a 
set of uncorrelated variables following Poisson distribution and uniform distribution. Packet dropout 
is caused as the data are not collected in time or data buffer overflows. The novel nonlinear Kalman 
filters (KFs) are developed using a multistep recursive estimation strategy with self-tuning buffer in the 
presence of gas path measurement uncertainty. The data buffers are introduced in the state estimator, 
the length of which is adaptive to the information loss level. The algorithms run recursively using the 
new arrival data and buffer position information. With a more effective arrangement of the collected 
measurements in real time, the better estimation accuracy of gas path health status is expected. 
Simulations involving abrupt fault and degradation datasets of aircraft engines were carried out to 
numerically evaluate and compare the performance of the improved nonlinear KFs with their existing 
KFs in the context of health estimation with time delay and packet dropout. The test results demonstrate 
that the proposed methodology not only reduces the computational time but also obtains a satisfactory 
accuracy for state estimation in the cases of engine gas path measurement uncertainty.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Aircraft engines are complex mechanical systems that supply 
the power for aircrafts, and their reliabilities are crucial for flight 
safety. The engine performance deteriorates with the use life. The 
performance degradations can be characterized by the changes of 
the component efficiencies and flow capacities [1,2], which are de-
fined by health parameters [3]. An effective maintenance schedule 
adapted to the level of deterioration of the engine benefits the 
overall safety and reduction of life cycle costs [4–6]. It is impor-
tant to find a reliable way to acquire information about the engine 
health condition. Measurements from local sensors are employed 
to estimate the health parameters since the health information 
cannot be obtained directly. A variety of factors, such as constraints 
of bandwidth, time delays and packet dropouts, randomly occur on 
the measurement transmission network from a local sensor to the 
state estimator [7,8]. The sensor measurements collected might not 
be punctual, ordered or informationally complete, and these are 
attributed to the measurement uncertainty. These will reduce the 
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state estimation accuracy, especially in a multi-sensor system like 
aircraft engine. Hence, the problem of state estimation with mea-
surement uncertainty has drawn more attention in the presence 
for engine gas path health estimation.

The KF is a well-known state estimation technique and is 
widely used for gas turbine health parameter estimation [8–11]. 
Variants of the KFs are developed and applied for engine compo-
nent and sensor fault diagnostics [8,9]. A bank of hybrid KFs was 
presented, which improved the fault detection rates and fault isola-
tion rates in engine fault diagnosis applications [10,12]. Compared 
to linear Kalman filters, the nonlinear KF, such as the extended KF 
(EKF) and unscented KF (UKF) have better state estimation accura-
cies for gas turbine engine [9].

With the rapid development of the sensor measurement tech-
nology, more sensors are utilized to the advanced gas path health 
management of aircraft engines. The reliable collection of sen-
sor measurements are vital to accurate health estimation results. 
However, measurement uncertainty inevitably happens, like ran-
dom time delays and packet dropouts as was mentioned earlier. 
Besides, it is hard to achieve state estimation due to the complex 
operation and harsh environments in the engines. The stabiliza-
tion problem with the limited number of packet losses was studied 
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[13,14]. The stability computation of the random Riccati equation 
was addressed in the KF with observation losses [15], and the KF 
stability analysis was presented as Markov packet losses [16]. An 
optimal fusion state estimation method was discussed for multi-
sensor systems with disordered measurements [17]. These studies 
prove the KF stability for state estimation with missing measure-
ment.

In order to improve the KF performance, the robust KFs were 
reported to the state estimation for stochastic systems with ran-
dom time delays and packet dropouts [18,19]. For linear discrete 
time-varying systems subject to a bounded uncertainty, a finite-
horizon robust KF was developed wherein the sensor measure-
ments were received via a packet delaying network [20]. A con-
stant data buffer was introduced to the problems of delays and 
packet dropouts for state estimations of multi-sensor system, and 
it is easy to run and consumes less computational efforts [21,22]. 
The time delay of measurement is modeled by a Bernoulli dis-
tributed random sequence, and finite-horizon two-stage KFs are 
discussed [23]. The previous works listed above mainly focus on 
linear systems, besides the systematic analysis of nonlinear KFs has 
not been reported for the health estimation of gas turbine engines 
with sampling time delays and packet dropouts.

In this paper, novel nonlinear KFs are proposed with the mul-
tistep on-line recursive estimation and self-tuning buffer strategy 
for multi-sensor system. The issue of measurement uncertainty re-
sulted from long-term time delay and packet dropout is concerned 
in gas path health estimation for aircraft engine. Long-term time 
delay is that delay time is more than the data sampling time of 
the system. The time delay model is built up to simulate the ran-
dom delay steps and data dropouts. The previous data packages are 
restored in the buffers and used for the nonlinear state estimator 
with a multistep recursive calculation strategy. The contribution of 
this paper is to develop the improved nonlinear KFs algorithms 
with a data buffer for state estimation with measurement un-
certainty, and the buffer length is tune to the reception ratio of 
measurements at the current time stamp. The detailed procedures 
of recursive buffer EKF (RBEKF) and UKF (RBUKF) and their tun-
ing buffer are presented in the multi-sensor system. Time delay 
probabilities of the sensed measurements follow Poisson distribu-
tion and uniform distribution, and data package dropouts occur as 
the sampling delay time increases. The following research is un-
dertaken by the authors both at Nanjing University of Aeronautics 
and Astronautics, Nanjing, China, and at the University of Toronto, 
Toronto, Canada. The systematic comparisons of the standard EKF, 
UKF and their improved algorithms are carried out for aircraft 
engine gas path health monitoring in the case of measurement un-
certainty in the multi-sensor system.

2. Aircraft engine model and problem setup

A two-spool turbofan engine is studied in this paper. It includes 
inlet, fan, compressor, bypass, combustor, high pressure turbine 
(HPT), low-pressure turbine (LPT), mixer and nozzle. A nonlinear 
mathematical model of the engine is built on the basis of compo-
nent level engine modeling theories [9,24], and it is expressed as 
follows:

xt+1 = f (xt , ut) + wt

yt = h(xt , ut) + vt
(1)

where ut , xt , and yt separately denote the engine input variables, 
state variables, and sensor measurements at time t . The model 
input parameter is fuel flow W f . The state variables of the en-
gine include two spool speeds NL , NH and health parameters h, 
x = [NL, NH , hT]T. The nonlinear functions f (·) and h(·) represent 

the engine state transition function and measurement function, re-
spectively. wt ∈ Q n and vt ∈ Rm are uncorrelated Gaussian white 
noises with E(wi, w j) = Q δi j , E(vi, v j) = Rδi j , and E(wi, v j) = 0
where δi j = 0 (i �= j); otherwise, δi j = 1.

The sensor measurements for engine health estimations contain 
the low pressure rotor speed NL , high pressure rotor speed NH , fan 
outlet temperature T22, fan outlet pressure P22, compressor outlet 
temperature T3, compressor outlet pressure P3, HPT outlet tem-
perature T43, HPT outlet pressure P43, LPT outlet temperature T6, 
and LPT outlet pressure P6. The engine health parameter vector 
h = [SE1, SW1, SE2, SW2, SE3, SW3, SE4, SW4]T is employed to de-
scribe the engine performance degradation from the ideal condi-
tion. The elements of health parameters are defined as:

S Ei = ηi

η∗
i

, SW i = W i

W ∗
i

i = 1, · · · ,4 (2)

where ηi, W i are the real efficiency and flow of the components, 
and η∗

i , W ∗
i are their ideal values. The parameters SE1, SE2, SE3, SE4

are the efficiency coefficients of the fan, compressor, high pressure 
turbine and low pressure turbine, and SW1, SW2, SW3, SW4 are 
sequentially their mass flow coefficients.

Due to the constraints of the signal transmission network re-
sources and harsh operating environment on the aircraft engine, 
sensor measurements will be time-delayed and partly lost in the 
process of their transmission. Various measurements received by 
the state estimator cannot be simultaneous and complete, or even 
data packs lost. In such case, the performance of nonlinear KF 
degrades, and sometimes filtering estimation will be divergence. 
Consequently, the nonlinear KFs for state estimation need to adapt 
to the measurement uncertainty like the time delays and packet 
dropouts in the multi-sensor system.

3. Health estimation method for aircraft engines

To improve the performance of state estimation, two aspects 
should be addressed: fulfill health estimation under incomplete in-
formation and make full use of available measurements. A data 
buffer is introduced in the KFs to collect the sensed time series, 
and the KFs run with the buffer recursively by a data filling strat-
egy. The RBEKF and RBUKF are then presented in detail, which are 
combined the data buffer to conduct the lost information at each 
sampling step. The self-tuning buffer length method is developed 
at last in the involved nonlinear KFs to reduce computational ef-
forts.

3.1. State estimation buffer

It is assumed that each channel has independent and random 
time delay of the network transmission in the multi-sensor sys-
tem, and the number of delay steps follows the same probability 
distribution [25–27]. The time stamp is employed, and it is an 
important data flag. The sensor measurements from the local sen-
sors are marked with time stamps, and sent to the state estimator 
through the network. Each sensor data received by the estimator 
is stored in a data buffer with constant length L (L ≥ 1). At timet , 
the first position in the buffer stores the data at time t − L +1, and 
the last position stores the data at t . The sensor measurements 
are reordered in the positions according to their time stamps. If 
the delay step is no more than the buffer length, the sensor mea-
surement will be stored in the buffer and available in the several 
coming steps. Otherwise, the measurement will drop out due to 
the buffer overflow.
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