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The safety and reliability of any complex mechanical structures are critical to ensure that they can 
function properly. Therefore, we need to thoroughly evaluate their reliability by performing dynamic 
probabilistic analyses, including the reliability and sensitivity analyses, which take the variation in 
the input variables into consideration. The typical approach is by performing the Monte Carlo (MC) 
simulation, which requires thousands of runs and could be computationally intractable. An efficient and 
accurate surrogate model can help reduce the computational burden in these analyses. To further reduce 
the computational complexity, we model only the extremum values, instead of modeling all the output 
responses within the time domain of interest. The developed surrogate model is called the improved 
Kriging (IK) algorithm with extremum response surface method (ERSM), or the IK-ERSM model. Compared 
to the previously developed QP-ERSM, which uses the quadratic polynomial (QP) model, the improved 
Kriging can better model the nonlinearity within the system. To build the IK model, we employ the 
genetic algorithm (GA) method to find the Kriging hyperparameters θ , by solving the maximum likelihood 
equation (MLE). This model shows a good accuracy, with a testing error of less than 1%. The effectiveness 
of the developed IK-ERSM model is demonstrated to perform the reliability and sensitivity analyses of the 
compressor blisk radial deformation. For the direct simulation, we consider the fluid–structure coupling 
of the system, for a more realistic analysis. The results show that the compressor blisk has a reliability 
degree of 0.9984 when the allowable value of the compressor blisk radial deformation is 1.60 × 10−3 m. 
From the sensitivity analysis results, we identify that the angular speed has the highest impact on the 
output response, followed by the inlet velocity and material density. Through the validation process, we 
see that the developed IK-ERSM model has a better overall performance than the QP-ERSM and K-ERSM 
models, in terms of the fitting times and testing errors. With these results, the IK-ERSM is demonstrated 
to be efficient and accurate in structural dynamic probabilistic analysis. This study provide a useful insight 
for the dynamic probabilistic design of complex structure and enrich mechanical reliability theory.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

With the increasing complexity and performance of mechanical 
systems, the requirements pertaining to structural design and anal-
ysis have consequently become higher. A structural failure during 
operations could prevent the mechanism from functioning prop-
erly and could even be catastrophic, and thus must be avoided at 
all cost. It is therefore imperative to perform a structural reliability 
analysis by considering all input variables and parameters, in order 
to improve the performance of a mechanical system.

There have been a large body of literature on the reliability 
analysis of complex structures, and various methods have been 

E-mail address: feicw544 @163 .com (C.-W. Fei).

proposed. Some of them will be briefly described below. An et al. 
verified the first-order reliability method for the structural relia-
bility analysis of suspended cable [3]. Lee et al. studied the struc-
tural reliability analysis by employing the second-order reliability 
method with a non-central or generalized chi-squared distribu-
tion [25]. Leira et al. evaluated the reliability of corroding pipelines 
by performing a Monte Carlo (MC) simulation [26]. Henriques et 
al. evaluated the reliability of structural response based on pertur-
bation techniques [18]. Depina et al. proposed an approach with 
meta-model line sampling for the reliability analysis of engineering 
structures [6]. Ezzati et al. developed a reliability analysis method 
on the basis of the conjugate gradient direction [9]. Zhai et al. 
discussed the stochastic model updating strategy with improved 
response surface model and advanced MC method to perform the 
structural reliability analysis of aeroengine stator system [42]. Al-
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laix et al. developed a novel analytical method-based response 
surface method (RSM) to evaluate structural reliability degree [2]. 
Alibrandi et al. investigated the support vector machine (SVM) 
model to calculate failure probability of a mechanical structure [1]. 
Song et al. presented multiple RSM-based artificial neural network 
for the probabilistic analysis of a complex structure with fluid–
thermal-structure interaction [39]. Fei et al. provided an efficient 
SVM of regression method for distribution collaborative probabilis-
tic design of the radial running clearance of turbine blade-tips, 
which offered a useful tool to perform the reliability analysis of 
a mechanical assembly [13]. The aforementioned efforts developed 
different methods for the reliability analyses of different structures. 
However, these works are not suitable for structural dynamic re-
liability analysis, since they only focused on the structural static 
reliability analysis, and ignored the dynamic behaviors of struc-
tures.

There have been quite a number of analytical techniques to per-
form dynamic structural reliability analyses developed by various 
researchers. Rajabalinejad et al. investigated a coupled MC sim-
ulation for the reliability analysis of an engineering structure by 
considering dynamic boundary [35]. Chakraborty et al. discussed 
time-varying reliability analysis of a laminated composite plate us-
ing RSM [4]. Zhai et al. investigated a refined RSM for the dynamic 
reliability of a pipe conveying fluid [41]. Radhika et al. exploited 
the dynamic estimation method to predict the structural dynamic 
reliability [34]. Gao et al. developed a dynamic reliability model of 
a mechanical component based on the equivalent strength degra-
dation paths [17]. Fang et al. employed the stress-strength inter-
ference theory and probability density evolution method to esti-
mate the structural dynamic failure probability [10]. Zhang et al. 
proposed the extremum response surface method (ERSM) for the 
dynamic reliability analysis of a flexible robot manipulator [43]. 
Fei et al. developed high-precision and efficient approaches includ-
ing distributed collaborative ERSM and distributed collaborative 
time-varying least squares SVM method, for the dynamic prob-
abilistic design of high-pressure turbine blade-tip radial running 
clearance [14,15]. Despite the aforementioned efforts to perform 
dynamic structural reliability analyses, these methods still suffer 
from the low computational efficiency. This issue is mainly due 
to the need to run thousands of dynamic deterministic analyses 
of structures spanning a large time domain. Moreover, the lack 
of accuracy is also a concern due to the limitation of quadratic 
polynomials, which are commonly employed in these methods, to 
model the highly nonlinear characteristics of the system. We there-
fore need to develop a computationally efficient and yet accurate 
dynamic probabilistic analysis method for complex structures.

The main objective of this paper is to explore an efficient ana-
lytical technique, which is called the ERSM-based improved Kriging 
algorithm (IK-ERSM). This method integrates the genetic algorithm 
(GA) method into the Kriging algorithm, by means of the MLE 
optimization procedure to find the Kriging hyperparameters. The 
developed model is then used to perform the dynamic probabilistic 
analysis of complex structures within the time domain [0, T ]. For 
the case study, the developed method is then applied to perform 
the dynamic probabilistic analyses (including reliability and sensi-
tivity analyses) of an aeroengine compressor blisk radial deforma-
tion with fluid–structure interaction. This case study will serve as 
the demonstration and validation of the method.

The remaining of this paper is structured as follows. In Sec-
tion 2 we provide an overview of the basic theories to develop 
the IK-ERSM method, starting from the basic Kriging method, the 
IK algorithm, ERSM and IK-ERSM methods. We also describe the 
dynamic probabilistic analysis procedure which employs the IK-
ERSM method. We then describe the implementation of the IK-
ERSM method to the dynamic probabilistic analysis for aeroengine 
compressor blisk radial deformation in Section 3. The analysis is 

performed by considering the randomness of some inputs such as 
the inlet velocity, inlet pressure, outlet pressure, material density, 
and angular speed. The validation procedure is then presented in 
Section 4, and we close the paper with some conclusions in Sec-
tion 5.

2. Basic theories

In this section we first present an overview of the Kriging 
method, before going into more details in the development of 
the improved Kriging (IK) and IK-ERSM methods. We then briefly 
describe the two dynamic probabilistic analysis procedures per-
formed on complex structures that will be demonstrated in this 
work, namely the dynamic reliability analysis and sensitivity anal-
ysis.

2.1. Kriging overview

The Kriging surrogate model was initially developed in the 
field of geostatistics by Danie G. Krige (after whom the method 
is named) in 1951 [23]. The term “Kriging” was coined by Math-
eron in 1963 [31], who was also the first to formulate Kriging 
mathematically. In 1973, Matheron applied the Kriging model to 
the mineral deposit reserves and error estimation [32]. The use of 
Kriging models in the design and analysis of computer experiments 
(DACE) was first proposed by Sacks et al. [37]; where points in the 
input space are analogous to the spatial (geographic) coordinates. 
In the recent decades, Kriging models have been commonly used in 
many applications, including the design optimization of structures 
or other engineering systems. Li et al. discussed Kriging model in 
the application of engineering optimization of gear train with the 
assistance of multi-objective genetic algorithm (MOGA) [28]. In the 
field of biomedical engineering, Li et al. investigated the design 
optimization of stent and its dilatation balloon using Kriging surro-
gate model [27]. Simpson et al. adopted the Kriging model for the 
multidisciplinary design optimization of an aerospike nozzle [38]. 
Zhao et al. studied the dynamic Kriging modeling method for a 
structural design optimization problem [44]. Liem et al. developed 
the mixture of experts approach with Kriging model to predict the 
aerodynamic performance to enable an efficient and accurate air-
craft mission analysis procedure [29]. The Kriging model was used 
in the field of structural reliability analysis [36,21,7]. The model 
was shown to be very accurate and efficient in dealing with highly-
nonlinear and high-dimensional problems.

In Kriging models, we assume that the deterministic response 
y (x) is a realization of a stochastic process Y (x) [37,22],

Y (x) = fT (x)β + z (x) . (1)

The first term is a generalized linear model that determines the 
trend of the Kriging model. The symbols f (x) and β are the vectors 
of basis functions and undetermined coefficients, respectively. The 
second term, z (x), is the stochastic component, which is treated as 
the realization of a stationary Gaussian random function with zero 
expected value, E [z (x)] = 0, and covariance

Cov
[
z
(
xp

)
, Z

(
xq

)] = σ 2 R
(
θ ,xp,xq

)
, (2)

where R (·) denotes the correlation function with R (0) = 1, and 
σ 2 denotes the variance. Here, xp and xq (p, q = 1, 2, . . . , m) are 
the vectors of the p-th and q-th input samples, where m is the 
number of samples. The Kriging hyperparameter θ is the correla-
tion parameter vector for R . These correlation parameters are also 
called the length scales or distance weights, and they are typically 
found via the maximum likelihood estimation (MLE) approach. The 
form of R 

(
θ ,xp,xq

)
is typically expressed as:
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