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This paper presents a novel development to synthesize finite-time near optimal feedback control for 
nonlinear systems with nonlinear terminal constraints such as hypersurfaces. Especially when terminal 
hypersurfaces are posed as transcendental equations, the developed SDRE-based method contributes 
first-ever treatment for such cases. The SDRE-based approach, to synthesize continuous-time terminal 
controllers, is first extended for the fixed-final-time optimal control problems via solving the pointwise 
governing Hamilton–Jacobi–Bellman equation subject to the pseudo-linear dynamical system with linear 
terminal constraints. Then, to fit these derived settings into a general class of terminal constraints as 
hypersurfaces, the method of successive linearization is employed to obtain approximated hyperplane 
which facilitates state-dependent boundary conditions in order to compute the feedback control input. 
To establish the developed methodology, numerical investigations on nonlinear systems including the 
fixed-finite-time optimal control problem of spacecraft spin maneuvers with a variety of terminal cases 
are illustrated with details. The obtained feedback solution, for all the examples, is compared with the 
respective openloop solution to validate the efficacy of the novel approach that accomplishes a very 
high accuracy of the synthesized terminal controller incurring the least cost-to-go even though terminal 
hypersurface has multiple endpoint solutions which are not a priori known.

Published by Elsevier Masson SAS.

1. Introduction

Improving on control design for real-world applications has al-
ways been under investigation to ensure optimized performance. 
Especially in the context of systems’ performance, to meet the 
boundary conditions with stringent precision, terminal controllers 
draw a special interest in many scientific fields [1]. Of particular 
interest are the problems that focus on engineering applications, 
which also can be cast with the cost requirements. In particular, 
in the field of aerospace, there are many challenging problems 
such as optimal large-angle maneuvers of spacecraft, multibody 
trajectory planning, space robotics, orbital station-keeping, space-
craft formation flying, rendezvous and docking missions, guidance 
of multi-agent co-operative systems, control of unmanned aerial 
vehicles (UAVs), collision avoidance, etc., which clearly require pre-
cise terminal control solutions for attaining the best performance. 
In the pursuit of dealing with such problems, if the mathematical 
modeling is assumed as linear system, a vast literature on theoret-
ical and practical developments is readily available for controller’s 
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design and analyses. But, considering these problems remains ex-
tremely daunting when the system’s dynamics and boundary con-
straints are nonlinear.

Apropos modern advancements for handling nonlinear mod-
els, in practice there is no unified approach which can ade-
quately accomplish fast and optimized control solutions accommo-
dating all types of nonlinearities and unknown disturbances, the 
subject of optimal control, nevertheless, has been well-practiced 
to enable technical solutions in many areas including significant 
developments toward aerospace applications since the past few 
decades. Optimal control theory [2] offers foundational background 
to solve both discrete-time and continuous-time optimal control 
problems (OCPs) in openloop and feedback fashion. To yield open-
loop optimal solutions, based on the classical calculus of varia-
tions approach [3], the first-order necessary conditions for opti-
mality transforms the OCP into a two-point boundary value prob-
lem (TPBVP), which can be solved by using direct and/or indirect 
iterative techniques [4]. As noted, the available regime of these 
techniques heavily depends upon judicious initial guesses to con-
verge at a candidate solution which must be tested further with 
the second order conditions to be the optimal. As such control de-
sign via openloop methods is not considered very practical due 
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to the method’s susceptibility to the initial conditions, time-to-go, 
and disturbances; however, these solutions, if available, are often 
utilized to learn the systems’ forced-behavior and accepted as the 
benchmark to compare the same with the counterpart in the feed-
back form; it can also be useful as a nominal solution to construct 
neighboring optimal control [2].

Another theoretical approach in optimal control, which is quite 
dedicated to obtain feedback extremals [7], is established as dy-
namic programming [5–7]. In the context of OCPs, this approach 
mainly proceeds with formulating the governing Hamilton–Jacobi–
Bellman (HJB) equation [2] which is basically a scalar first-order 
nonlinear partial differential equation (PDE). Solution of this PDE 
categorically attains optimal feedback control without checking the 
second order conditions for local optimality. However, obtaining 
analytical solution of the HJB equation, even for a low dimensional 
linear system, is a formidable task; hence, to solve it numeri-
cally, the available techniques as in [8–12] and many others mostly 
rely on algorithms in-built from qualified approximations, which, 
in general, much depends upon systems’ nonlinearities, terminal 
constraints and control bounds. Therefore, due to major difficul-
ties in approximating the solution of the constrained finite-time 
HJB equation, much of this kind of framework is displayed on 
infinite-time OCPs; the finite-time OCPs with nonlinear terminal 
constraints have not received its due attention.

Focusing on the literature review for terminally constrained 
OCPs, these problems are mostly viewed as special cases in terms 
of soft or point terminal constraints. To approximate the con-
trol solution with respect to point terminal constraints, Caetano 
and Yoneyama [13] developed an iterative scheme using linear-
quadratic (LQ) approximation. Wei et al. [14] studied another it-
erative method derived from continuous-time differential dynamic 
programming to solve finite-time OCPs with point terminal con-
straints. In [15,16], Park and Scheeres presented a generating func-
tion approach that uses canonical transformations to compute the 
closed-form solution for general boundary conditions. However, in 
all of these case-by-case developments, there is no formal dis-
cussion of nonlinear terminal constraints as such. To address it 
first time, by using the dynamic programming approach, Vadali 
and Sharma [17] devised the series solution methodology (SSM) 
for generating higher-order optimal feedback control for a class of 
nonlinear systems with nonlinear terminal constraints. Especially 
for the LQ terminal controller, the SSM is presented as an alter-
native of two-step sweep method [2] to derive the closed-form 
solution. To broaden the capabilities of SSM, Sharma et al. [18]
extended the series-based technique using a waypoint scheme. 
The SSM, as established in [17,18], achieves terminal controller 
for nonlinear systems, however, the methodology is confined be-
cause of its governing structure based on Taylor’s series expansion 
of the HJB equation given in the polynomial form. To deal with 
a non-polynomial high-dimensional (3 or more) system, the SSM 
relatively requires more terms in the approximating series, which 
sometimes may encounter curse of dimensionality [5] resulting in 
excessive computational burden of gain tensors to influence the 
control input and the desired terminal accuracy. In the same di-
rection, to handle discrete-time terminally constrained OCPs up to 
the level of terminal hypersurface, Heydari and Balakrishnan [19,
20] explored the method of adaptive critics to obtain the feed-
back neuro-controller. The established controller, however, is pre-
cisely an outcome of an iterative approach that, with some mild 
conditions, much depends on the judicious offline training to ob-
tain the neural-network gains a priori. Using approximate dynamic 
programming, another seemingly fast iterative approach named as 
model predictive static programming was contributed by Padhi and 
Kothari [21] to present suboptimal solution which is applicable for 
discrete-time nonlinear systems only. Also, the method uses small 
error approximation that requires good initial guess history of con-

trol solution to initiate the iterative algorithm for point constraints 
only. Maity et al. [22] recently proposed an extended and compu-
tationally efficient version of [21] as generalized model predictive 
static programming given in continuous time, however, it was with 
the same limitations as in [21].

In the perspective of some other noteworthy approaches to 
terminally constrained OCPs using the dynamic programming for-
malism, Heydari and Balakrishnan [23,24] recently contributed a 
versatile method of using the finite State-Dependent Riccati Equa-
tion (SDRE) method to synthesize suboptimal closed-form solution 
of the fixed-finite-time OCPs, but the work was just limited with 
soft terminal constraints only. Parsley and Sharma [25] presented 
near optimal finite-time feedback guidance for lunar landing prob-
lem by extending the SDRE-based technique using the backward 
sweep method [2], however the solution procedure is examined 
for soft and point terminal constraints only. Steinfeldt and Tsiotras 
[26] studied the use of HJB framework with the SDRE-technique 
for the infinite-time regulation problem by using sum-of-squares 
programming to investigate the closed-loop stability and robust-
ness.

In this paper too, motivated from the design of LQ termi-
nal controllers and the prominence of SDRE-based practical tech-
niques, the SDRE-type formalism is utilized to develop the new 
methodology in the feedback form. Briefly, just to trace out the 
usage of the SDRE technique for control applications, first time, 
Cloutier et al. [27–30] presented this technique to deal with 
infinite-time OCPs and its applications to aerospace systems. In or-
der to generate the feasible feedback control input for nonlinear 
system, the SDRE technique fundamentally exploits pointwise fu-
sion of LQ-type control design by expressing the nonlinear system 
as a pseudo-linear system at every time point in computation. As 
elaborated in the recent survey paper on the SDRE by Cimen [31], 
the SDRE-based controllers are widely implemented in the bulk of 
applications in many different areas including complex aerospace 
[31] and nonlinear analytic systems [32] due to its attractive stabil-
ity domain, robustness, low computational needs and effectiveness 
to deliver result-oriented suboptimal solution [32–34]. Further-
more, details on the SDRE techniques can be viewed in [31–34]
and the references therein.

As just discussed above, to the best of authors’ knowledge, the 
literature thus far delineates no such direct treatment to deal with 
general fixed-finite-time OCPs with generalized hard constraints 
such as terminal manifolds/hypersurfaces in the feedback formal-
ism. Specifically, for the OCP in which the terminal constraint is 
prescribed as a transcendental equation or if it is not prespecified 
as a unique point, there is no available technique to determine 
the optimal feedback solution just because such OCPs become ex-
tremely challenging to conduct further investigations about check-
ing optimality conditions. To step ahead in this direction, this pa-
per clearly presents near optimal nonlinear feedback synthesis of 
terminal controllers by obtaining a novel extension of the SDRE-
based technique for continuous finite-time OCPs using the dynamic 
programming approach, which is proven highly effective to facil-
itate a unified solution procedure to deal with a large class of 
high-dimensional nonlinear systems given with general boundary 
conditions as point, hyperplane or hypersurface.

The findings in this paper are organized as follows: Section 2
describes the mathematical formulation of the OCP with general 
terminal constraints. Then, Section 3 proceeds with the theoretical 
development of the novel SDRE-based method using the dynamic 
programming approach. Next, to show the efficacy of the method-
ology, Section 4 thoroughly discusses numerical illustrations of 
three distinct examples spanning from one-dimensional nonlinear 
system to three-dimensional finite-time spacecraft spin maneuver 
problem with a variety of cases. Finally, Section 5 presents conclu-
sions with remarks followed by the list of key references.
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