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This paper aims to improve the performance of artificial neural networks used for the aircraft system 
identification by taking flight dynamic characteristics into consideration. In the proposed method, flight 
dynamic modes are recognized, isolated, and inputted individually to feed-forward neural networks. 
This method has several advantages such as being adaptive, involving all observable modes in the 
identification process, considering interactions between longitudinal and lateral-directional modes, and 
reducing noise effects. Simulated and real flight data of the HARV aircraft at high-angle of attack 
maneuvers are employed to train the neural networks and evaluate them. Results demonstrate improved 
accuracy and generality of the proposed method in comparison with the conventional ones.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

In order to gain tactical advantages, a high-performance aircraft 
such as an agile fighter should be able to perform controlled ma-
neuvers throughout its flight envelope, especially at high angles 
of attack. In this regime, nonlinear and unsteady aerodynamics 
has drastic effects on the stability, controllability and maneuver-
ability of the aircraft. Therefore, nonlinear aerodynamics should be 
considered in the design, development and flight of maneuverable 
aircraft.

From a detailed view, flow characteristics at high angles of at-
tack are currently well-known. There is an enormous amount of in-
formation about small-scale flow behaviors (i.e., separation, vortex 
and boundary layer) in this regime, thanks to analytical, numerical 
and experimental aerodynamic approaches [1]. From a wider view, 
nevertheless, behaviors of a real aircraft in critical high angle of at-
tack regimes such as the buffet, wing drop, wing rock, adverse yaw, 
departure, post-stall gyrations, incipient spin, deep stall and spin 
remain practically unknown yet. Modeling of these phenomena 
is inevitable for high-fidelity simulators and adaptive controllers. 
Aircraft complex behaviors in these regimes cannot be modeled 
according to conventional theories such as linear aerodynamic co-
efficients. Hence, nonlinear aerodynamic models are required in 
order to precisely predict actual behaviors of the aircraft at high 
angle of attack maneuvers throughout the flight envelope.
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Aircraft system identification is an effective approach for the 
nonlinear aerodynamic modeling. This approach eliminates the 
need to employ assumptions, conventional theories and basic 
knowledge about the structure of the aerodynamic model. There-
fore, it may provide more precise results than analytical, semi-
empirical, numerical and experimental approaches. So far, several 
mathematical tools have been utilized for the aircraft system iden-
tification such as polynomials [2,3], kernel methods like support 
vector machines [4,5], splines [6,7], the multi-variable orthogonal 
model [8,9], the multipoint method [10] and Artificial Neural Net-
works (ANNs) [11–13].

Due to the capability to estimate a wide range of functions, the 
ANNs can provide effective non-parametric identification methods 
for nonlinear systems. Previous studies have indicated that feed-
forward multilayer ANNs as general estimators can estimate any 
arbitrary function and its derivatives with any desired accuracy 
[14,15]. This feature called capacity has led the ANNs to be ap-
plied to system identification of dissimilar aircraft types such as 
airplanes [11–13], rotating wings [16,17], unmanned aerial vehi-
cles [18] and missiles [19]. Furthermore, the ANNs have been em-
ployed to recognize and identify different flight phenomena such 
as aeroelastic [20], unstable [21,22] and nonlinear high angle of 
attack [23–27] behaviors of aircraft.

Despite the similar objective of the conducted studies, diverse 
ANNs have been employed for the aircraft system identification. 
For instance, both Feed-Forward Neural Networks [11–13] and Re-
current Neural Networks [23,24,28,29] have been widely used; 
however, the former is more common due to the flexibility in 
the parameter estimation. Also, different architectures have been 
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Nomenclature

c the IMF
x the investigated signal
m the signal trend
u the upper signal envelope
l the lower signal envelope
h the proto-IMF
r the remainder
t time
α angle of attack
β side slip angle
M Mach number
p,q, r angular velocity components in body frame
δH , δA, δr stabilator, aileron and rudder commands
C D , CL, CY force coefficients in the stability frame
Cl, Cm, Cn moments coefficients in the body frame
q̄ dynamic pressure
V total velocity
b aircraft wing span
c̄ aircraft mean aerodynamic chord
δT throttle command
h altitude
e error vector
u, v, w linear velocity components in body frame
g gravity acceleration
φ, θ,ψ Euler angels
m aircraft mass
x state vector

u control vector
e error
y measured signal
d desired output
o real output
J Jacobian matrix
w weight vector
I the identity matrix
μ the combination coefficient
� difference
ax,ay,az linear acceleration components in the body frame
T thrust
W aircraft weight
Ixx, I yy, Izz, Ixz aircraft moments of inertia
X̄CG the CG position
S aircraft reference area
lx, l y, lz thrust arms to CG

Subscript

i, j jth iteration for finding ith IMF
i for ith IMF
β, p,q, r, α̇ due to β, p, q, r, α̇ respectively
x, y, z components in body frame
1 at trim condition
L, R left and right
m, p for the mth output and the pth pattern

utilized; for example, the number of hidden layers varies from 
zero [18] to two [22,30–32] while the single-layer networks are 
widespread. Moreover, learning rules with different optimization 
algorithms are employed such as variations of the Kalman Filter 
[13,33], Gauss–Newton’s algorithm [34], Levenberg–Marquardt al-
gorithm [23,35–37] and scaled conjugate gradient algorithm [22,
38]. Furthermore, there are various activation functions such as 
identity [17], sigmoid [12,19,24], radial basis function [13,16,39,
40], hyperbolic tangent [22,28,30], logistic [35] and wavelet [33,
41,42]. In addition, there are dissimilar numbers of neurons, learn-
ing and momentum rates, and connections between neurons in the 
conducted studies.

Despite numerous studies, the aircraft system identification via 
the ANNs faces some difficulties essentially caused by the nonlin-
earity at high angles of attack and angular rates. Therefore, new 
studies are undertaken in order to expand the fidelity range of the 
ANNs into nonlinear regions of the aircraft flight envelope [43–48]. 
A popular misconception is that changing the architecture or learn-
ing rule of the ANNs can resolves problems arose from the appli-
cation of ANN to the aircraft system identification. Investigations, 
however, do not confirm this. It seems unlikely that variations on 
the architecture or learning rule of the ANNs will bring about a 
step forward unless new insights into the aircraft system identifi-
cation are introduced. The current paper attempts to achieve new 
insights into the aircraft flight dynamics and to improve the air-
craft system identification by considering them. The paper presents 
neither a new architecture for the ANNs nor a different learning 
rule; but it proposes to consider aircraft flight modes as inputs of 
the ANNs.

The remainder of the paper is organized as follows: Section 2
describes effects of flight dynamics on the aircraft system identi-
fication, and disadvantages caused by ignoring these effects. Sec-
tion 3 explains the preprocessing required to be applied to flight 
data before the identification process, and introduces the empirical 

mode decomposition for this purpose. In Section 4, the simula-
tion model including the aircraft model and aircraft equations of 
motion is presented. Section 5 proposes the improved ANN for 
the aircraft system identification, including the input data, out-
put data, model architecture, and parameter estimation technique. 
In Section 6 comparative studies are conducted between the con-
ventional and proposed ANNs for simulated and real flight data. 
Finally, Section 7 concludes the paper.

2. Effects of flight dynamics on the aircraft system identification

Experience has indicated that the aircraft flight is composed 
of various modes, and any aircraft flight parameter is a superpo-
sition of them. Containing dissimilar frequencies and amplitudes, 
these modes cause complex behaviors of aircraft. Therefore, the 
aircraft system identification is affected intensely by flight dy-
namics. The classical flight dynamic analysis is undistinguished in 
the estimation of flight modes. Under several assumptions such 
as flat earth, constant weight, rigid body, non-rotating compo-
nents, shallow flight path angles, small perturbations, and decou-
pling of longitudinal and lateral-directional equations, the classical 
analysis describes aircraft motions as a linear time-invariant (LTI) 
model. Afterwards, second order linear differential equations with 
constant coefficients are converted to uncoupled longitudinal and 
lateral-directional transfer functions. Finally, flight modes are ex-
tracted by substitution stability and control derivatives into charac-
teristic equations, and solving them. There are some fundamental 
problems in this process:

• The assumptions are not necessarily correct for all aircraft 
types.

• Based on the classical analysis, the longitudinal and lateral-
directional modes are identical in the number and configu-
ration of roots. However, studies have shown that there are 
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