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This paper proposes a feedback guidance law to move the instantaneous impact point (IIP) of a rocket to a 
desired location. Analytic expressions relating the time derivatives of an IIP with the external acceleration 
of the rocket are introduced. A near time-optimal feedback-form guidance law to determine the direction 
of the acceleration for guiding the IIP is developed using the derivative expressions. The effectiveness 
of the proposed guidance law, in comparison with the results of open-loop trajectory optimization, was 
demonstrated through IIP pointing case studies.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

The instantaneous impact point (IIP) of a rocket, given its po-
sition and velocity, is defined as its touchdown point assuming a 
free-fall flight (without propulsion) [1]. The IIP is considered as a 
very important information for safe launch operation of a rocket, 
and it should be calculated and monitored in real-time on the 
ground facility or on-board of the rocket. The trespassing of IIP 
trajectory across a destruction line (DL) is one important criterion 
for a range safety decision – activation of the flight termination 
system (FTS) – for flight safety operation. A number of studies 
on prediction of the IIP and their applications for flight safety 
operation could be found in the literature. These studies include 
the techniques for computing the IIP in various coordinate sys-
tems [2–5], methods on compensation for the effects of gravity 
perturbation and atmospheric drag [6], expressions for the time 
derivatives of IIP [7], and introduction of a new flight safety crite-
rion [8].

In addition to flight safety operations, the IIP can be used for 
pre-flight analysis and open-loop optimization of a rocket, partic-
ularly to obtain and specify the impact point of separated stages. 
Yoon and Ahn proposed a trajectory optimization procedure con-
sidering the IIPs of the first-stage and payload fairing segments of 
a launch vehicle as explicit constraints [9]. Using the dispersion 
analysis, Mandic introduced a guidance and control algorithm that 
can steer a rocket so that its impact point reaches a target loca-
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tion [10]. The IIP change is important for recent landing guidance 
of a separated stage of a reusable launch vehicle. For example, it 
is known that the landing guidance for the separated first stage of 
Falcon 9 involves the “boostback burn” using three out of nine en-
gines, which change the IIP of stage toward the landing site (barge 
ship or launch site) [11].

This paper proposes a new near time-optimal feedback guid-
ance law that moves the IIP of a rocket to a target point, whose 
schematic diagram is shown in Fig. 1. The analytic formulation that 
describes the time derivatives of an IIP for a given external accel-
eration vector (primarily produced by the propulsion system) was 
established. An optimization problem that determines the compo-
nents of the external acceleration vector to align the IIP derivative 
vector with the desired direction and maximize its magnitude was 
formulated, and it can be solved analytically by introducing the 
Lagrange multipliers. The proposed guidance law was validated 
through a case study and compared with the results of an open-
loop trajectory optimization to minimize the final time.

Three key contributions of this study are summarized as fol-
lows. First, the proposed guidance law is a feedback form that can 
explicitly specify the IIP at the final time. Since the guidance law 
is a feedback form, it is robust to the error coming from various 
sources (e.g., the position and velocity errors at the beginning of 
the guidance). Second, its performance is near time-optimal, and 
near fuel-optimal assuming the acceleration profile of the rocket 
is given. Lastly, the proposed law does not involve any iterative 
procedure, which is a very attractive property for its potential on-
board implementation.

This remainder of this paper is organized as follows. Section 2
introduces the methodology to calculate the Keplerian IIP and its 
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Fig. 1. Schematic diagram explaining IIP guidance.

time derivatives. Section 3 proposes a feedback guidance law to 
move the IIP of a rocket to a desired point in a near time-optimal 
manner, which is obtainable by solving a constrained optimization 
problem established based on the results of Section 2. Case studies 
for validating the guidance law are presented in Section 4. Finally, 
Section 5 discusses the comprehensive conclusions of this study 
and potential opportunities for future work.

2. Calculation of IIP and its time derivatives

This section introduces the procedures to calculate the IIP and 
its time derivatives in an inertial (Earth centered inertial, ECI) and 
rotating (Earth centered Earth fixed, ECEF) frames, which provides 
the fundamentals of the feedback IIP guidance law discussed in 
this paper. Note that Subsections 2.1 and 2.2 are written by sum-
marizing the results of prior studies conducted by Ahn and Roh [5,
7]. The parameters and geometry used to compute the IIP and its 
time derivatives are shown in Fig. 2.

2.1. Calculation of Keplerian IIP [5]

Consider the translational motion of a rocket subject to gravity 
(g) and an external acceleration (a) as follows:

ṙ = v (1)

v̇ = g + a = g(r) + ar ir + aθ iθ + ahih (2)

In the dynamic equations, r and v are position and velocity 
of the rocket, respectively; ar , aθ , and ah are the components of 
acceleration vector in position, tangential, and linear momentum 
directions, respectively, and ir , iθ , and ih are the unit vectors of 
the directions. If the Keplerian two-body motion is assumed, the 
gravitational acceleration is expressed as

g(r) = − μ

‖r‖3
r (3)

Given current position (r0) and velocity (v0) of the rocket, its 
IIP in the ECI coordinate frame is expressed as follows:

ip = cos(γ0 + φ)

cosγ0
ir0 + sinφ

cosγ0
iv0 (4)

Fig. 2. Parameters and geometry for computing IIP and its derivatives.

In this equation, γ0 and φ are respectively the flight path angle 
and the angle of flight of the rocket expressed as

γ0 = sin−1
(

r0 · v0

‖r0‖‖v0‖
)

= sin−1
(

r0 · v0

r0 v0

)
(5)

φ = sin−1
(b1b3 +

√
b2

1b2
3 − (b2

1 + b2
2)(b

2
3 − b2

2)

b2
1 + b2

2

)
(6)

where b1, b2, and b3 are expressed as

b1 = − h

μr0
(r0 · v0), b2 = h2

μr0
− 1, b3 = h2

μrp
− 1 (7)

The time of flight of the launch vehicle – between the current 
time and the impact time – is expressed as follows [12]

tF = r0

v0 cosγ0

(
tanγ0(1 − cosφ) + (1 − Λ) sinφ

(2 − Λ)(
1−cos φ

Λ cos2 γ0
+ cos(γ0+φ)

cos γ0
)

+ 2 cosγ0

Λ( 2
Λ

− 1)1.5
tan−1

( √
2
Λ

− 1

cosγ0 cot( φ
2 ) − sinγ0

))
(8)

where Λ (≡ (v0/vc)
2 = r0 v2

0/μ) is defined as the square of the 
ratio between the current velocity and the circular orbit velocity 
with given radius (vc = √

μ/r0). The IIP latitude and longitude in 
the ECI coordinate system can be expressed using the components 
of the IIP unit vector in Eq. (4) as

Latp = sin−1(ipz) (9)

Lonp = arctan2(ipy, ipx) (10)

The IIP longitude in the ECEF coordinate system is obtained by 
reflecting the Earth’s rotation during the time of flight as

LonE
p = Lonp − ωe(t − tref + tF ) = Lonp − ωe�t (11)
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