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This paper addresses the attitude consensus problem of multiple rigid bodies in terms of the unit 
quaternion parameterization. By employing Lyapunov theory and homogeneous techniques, distributed 
finite-time attitude consensus laws are proposed for leader-following and leaderless multi-agent systems, 
with full-state (i.e., attitude plus angular velocity) or attitude-only measurements. Specifically, sliding 
mode observers are used to estimate the leader’s information in finite time for followers without direct 
access to the leader. The so-called “separation principle” is then established between the observers and 
the consensus controllers. In addition, quaternion filtering systems are constructed to inject the necessary 
damping into the closed-loop system when angular velocity measurements are absent. In all scenarios, 
the proposed methods ensure almost global finite-time convergence, avoid the unwinding problem, and 
yield continuous control torques with a priori known bounds. Numerical examples demonstrate the 
effectiveness of the proposed methods.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Cooperative attitude consensus of a team of rigid bodies has 
attracted great interests recently due to its broad applications in 
spacecraft formations, networked unmanned aerial or underwater 
vehicles, etc. The problem is very challenging because the attitude 
configuration SO(3), the set of 3 × 3 rotation matrices, is a com-
pact non-contractible manifold, and the attitude kinematics and 
dynamics are both nonlinear. It is more complicated than the at-
titude control for a single rigid body because certain collective 
behavior and information flow are required among the team mem-
bers. Generally, attitude consensus control can be categorized into 
leaderless consensus [1,2], cooperative tracking [3–13], and con-
tainment control [14], where the attitudes of the team members 
reach a synchronized state, track a leader’s trajectory, and enter a 
convex hull of multiple leaders’ attitudes, respectively. This paper 
mainly focuses on the former two types.

Attitude synchronization and/or tracking laws for the above ap-
proaches were designed either directly on SO(3), or in terms of 
modified Rodrigues parameters (MRPs), a minimal yet non-global 
parameterization, or unit quaternions, a global redundant parame-
terization. For the leader-following consensus problem, the meth-
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ods of [3–8] necessitate that every follower access the leader’s 
trajectory information, while in practice it is common that only a 
subset of the followers has direct access to the leader. Although 
applicable to this case, the leader-following consensus laws de-
rived in [9,10] rely on the neighbor’s acceleration, which is dif-
ficult to obtain. In the case that the leader’s angular velocity or 
acceleration has a linearly parameterized structure known to all 
followers, adaptive algorithms were constructed in [11,12] to re-
cover the leader’s motion. In order to obtain the reference tra-
jectory with milder restrictions, finite-time convergent observers 
were proposed in [14–18] following the spirit of the sliding mode 
estimators of [22]. In addition, when the absolute and relative an-
gular velocities are unavailable to each member, first-order filters 
of different forms were developed in [1,6,10,15] to generate the 
necessary damping. Such way of damping injection actually utilizes 
the passivity property of the system dynamics [19]. The studies in 
[16–18] attempted another means and designed various observers 
to provide direct velocity estimates. The resultant output-feedback 
consensus laws in [16–18], however, lead to semi-global stabil-
ity and intrinsically require high gains to expand the domain of 
attraction. Internal model and adaptive control techniques were 
employed in [20] to cope with the inertia uncertainties and pe-
riodic disturbances for leader-following spacecraft. Recently, Nazari 
et al. [21] have developed a simultaneous position and attitude 
consensus algorithm for a leaderless spacecraft formation that can 
tolerate constant communication delays.
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Note that all the preceding attitude consensus schemes, either 
asymptotically or exponentially stable, result in infinite settling 
time. In contrast, finite-time stability implies a finite convergence 
time and better disturbance rejection than asymptotic or expo-
nential stability, as shown for the control of linear systems and 
Euler–Lagrange systems [22–24]. Given these advantages, finite-
time attitude consensus laws were designed with full-state mea-
surements [25–27] or attitude-only measurement [28–30]. The de-
signs in [25] and [26] both utilized the adding-a-power-integrator 
approach but were based on the modified Rodrigues parameters 
and the vector part of unit quaternions respectively. Consequently, 
the controller in [25] does not allow rotations beyond 360◦ while 
the controller in [26] has a singularity at rotations of 180◦ . Note 
that the methods in [28,29] are limited to a stationary reference 
attitude. Generic time-varying reference trajectories were consid-
ered in [30] and feedback domination plus homogeneous tech-
niques were applied to derive the velocity-free consensus law, 
which ensures merely semi-global finite-time stability. Finite-time 
consensus laws were also derived in [31] for relative planar motion 
control of a group of spacecraft.

Another important issue is that the attitude manifold admits no 
continuous feedback law with global attraction [32]. In addition, 
unit quaternions cover SO(3) twice and thus always induce two 
points representing the same desired attitude. Due to these fea-
tures, most of the above attitude consensus laws are nonglobal and 
some can cause unnecessary full rotations even for small initial at-
titude errors, an undesirable phenomenon known as unwinding. 
To overcome this problem, discontinuous techniques were applied 
first in a memoryless manner [3] and then with hysteresis [33–35]
for attitude synchronization. The resultant discontinuous control 
torque, however, cannot be implemented by actuators that pro-
vide continuous inputs only. The continuous synchronization laws 
in [2,5] avoid unwinding but only local stability was verified. In 
addition, the designs in [17,28–30] restrict attitude rotations to 
within 180◦ , which might not hold for large angle maneuvers. In 
fact, as shown in [36] for the attitude stabilization of a single rigid 
body, the best achievable result with continuous feedback is almost 
global finite-time stability (AGFTS). In other words, finite-time con-
vergence generally holds except for a nowhere dense subset. How-
ever, it is not straightforward to extend the results for single rigid 
body to networked rigid bodies, as the information flow within the 
network must be taken into account.

This paper investigates the attitude consensus of networked 
rigid bodies, under either a leader-following or leaderless architec-
ture, based on the unit quaternion parameterization. Distributed 
finite-time attitude consensus laws are derived, first with attitude 
plus angular velocity measurements and then with attitude-only 
measurements, via Lyapunov theory and homogeneous techniques. 
For the leader-following case, distributed sliding mode observers 
are designed to recover the leader’s trajectory information in fi-
nite time. When angular velocity measurements are unavailable, 
quaternion filters are constructed to provide the necessary damp-
ing for the closed-loop system. This avoids the requirement of 
observers for direct estimation of angular velocity. The main con-
tributions of this paper are summarized as follows:

1) The leader-following and leaderless attitude consensus issues 
are approached in a unified framework. The leaderless consensus 
laws can be readily obtained from the leader-following consensus 
laws by cutting the goal-seeking feedback and setting the inertial 
frame instead of the leader’s frame as the reference attitude tra-
jectory.

2) It is shown that the proposed methods attain finite-time at-
titude consensus for almost all initial conditions when the commu-
nication topology is connected and acyclic (i.e., a tree). Importantly, 
the distributed finite-time observer enables to derive attitude con-
sensus laws by slightly extending the attitude controllers for single 

spacecraft. Although the observer for the leader’s motion data and 
the controllers for attitude consensus are designed independently, 
a separation principle between them can be easily established. In 
other words, when the leader’s information used in the controllers 
is replaced by the observers’ estimates, the closed-loop trajectory 
never blows up in a finite time and thus finite-time attitude con-
sensus is still achieved.

3) Since the double-covering feature of the unit quaternion 
representation is taken into account, our methods produce consis-
tent continuous vector fields on the attitude manifold. As a result, 
the antipodal equilibria representing the same attitude are made 
both locally finite-time stable and thus the unwinding problem is 
avoided. In addition, the resulting control torques possess a simple 
proportional-derivative structure and are bounded a priori, thus fa-
cilitating the accommodation of saturation constraints.

The rest of this paper is organized as follows. In the next sec-
tion, preliminary concepts, useful lemmas and equations of rigid-
body attitude motion are introduced. Distributed attitude consen-
sus laws for both leader-following and leaderless rigid-body net-
works are then developed in Section 3 with full state informa-
tion and in Section 4 with attitude-only measurements, respec-
tively. Section 5 demonstrates the application and effectiveness of 
the proposed methods via numerical simulations. Conclusions are 
summarized in Section 6.

2. Preliminaries and mathematical models

2.1. Notations

Throughout the paper, let ‖ · ‖ and ‖ · ‖∞ denote the Euclidean 
norm and infinity norm of a vector or a square matrix, respectively. 
Let In denote the index set {1, · · · , n}. Set 1n = [1, · · · , 1]T ∈ R

n

and denote by In the n × n identity matrix. For ∀x, y ∈ R
3, x×

is the skew-symmetric matrix satisfying x× y = x × y, where ×
is the cross product on R3. Denote by σ̄ (·) and σ (·) the maxi-
mum and minimum singular values of a matrix. For any x ∈ R, let 
sgnα(x) = sgn(x)|x|α , where α ≥ 0 and sgn(·) is the standard sign 
function. Obviously, sgnα(x) is a continuous nonsmooth function 
when 0 < α < 1. For ∀x ∈ R

n and 0 ≤ α ≤ 1, define sgnα(x) =
[sgnα(x1), · · · , sgnα(xn)]T and satα(x) = [satα(x1), · · · , satα(xn)]T , 
where satα(xi) = sgn(xi) min{|xi |α, 1}, i ∈ In . In addition, y = O(x)
means |y| ≤ c|x| for sufficiently small |x| and some constant c > 0. 
Given ε > 0 and a weight vector r = (r1, · · · , rn) with ri > 0, i ∈ In , 
a dilation operator �r

ε is defined by �r
εx = (εr1 x1, · · · , εrn xn) for 

x ∈ R
n . For time-dependent functions and systems, the dilation op-

erator �r
ε is extended as �r

ε(x, t) = (�r
εx, t).

2.2. Definitions and lemmas

Consider a time-varying system

ẋ = f (x, t), x ∈R
n (1)

where f (x, t) = [ f1(x, t), · · · , fn(x, t)]T ∈ R
n is continuous with re-

spect to x. The vector field f (x, t) is said to be homogeneous 
of degree h ∈ R with respect to a dilation �r

ε if f i(�
r
ε(x, t)) =

εri+h fi(x, t) for ∀i ∈ In , ∀x ∈ R
n , and any ε > 0 [37]. Denote by 

U a neighborhood of x = 0 and assume f (0, t) = 0. Then, x = 0 is 
uniformly finite-time stable if it is 1) uniformly Lyapunov stable in 
U and 2) uniformly finite-time convergent in U . If U = R

n , then 
the origin is uniformly globally finite-time stable (UGFTS). If sys-
tem (1) is time-invariant, the qualifier ‘uniformly’ can be omitted 
in the preceding statements.

Lemma 2.1 ([38]). Consider the system

ẋ = f (x) + f̂ (x, t), f (0) = 0, x ∈R
n (2)
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