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This paper presents a distributed adaptive control framework for multiple spacecraft formation flying 
around Lagrange point orbits, which account for unmeasurable velocities and (spacecraft) mass 
uncertainties. The nominal trajectory for the formation system is a halo orbit parameterized by Fourier 
series expansions. Such an explicit, albeit approximate, description of the nominal trajectory facilitates 
each spacecraft in formation to include the relative state information into a cooperative feedback control 
system design, so that the relative motion can be driven towards a desired trajectory while maintaining 
a group synchronization during the maneuver. The developed distributed control strategies rely on the 
protocols formulated on an undirected topology with mutual information interactions, utilizing every 
available neighbor-to-neighbor communication data couplings, in order to improve the reliability of 
the formation. Numerical simulations show that the proposed adaptive control laws guarantee global 
asymptotic convergence and system robustness.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Formation flying enables multiple vehicles to operate closely to 
accomplish complex space tasks that would be difficult to obtain 
with a single, conventional, spacecraft. Exploiting a task distribu-
tion among smaller, less-expensive vehicles, the spacecraft in a 
formation are able to share information and operate cooperatively, 
thus enhancing the system flexibility and reducing the overall mis-
sion costs [1]. Besides, formation flying also provides a means to 
improve specialized functions, such as image resolution and in-situ 
observation in astronomical missions [2]. Due to its distinctive pe-
culiarity, some advanced formation flying-based mission scenarios 
have been proposed in the last decades in both geocentric and 
deep space environment. In this context, interesting examples are 
offered by PRISMA [3], a demonstration mission for autonomous 
technologies and on-orbit-servicing techniques, and Darwin [4], 
a scientific mission for Earth-like exo-planet detections.

One of the most practical applications of the formation flying 
concept is to observe (or explore) the celestial bodies by plac-
ing a number of spacecraft around the Lagrange points, known 
as the five equilibrium (stationary) solutions to the circular re-
stricted three-body problem (CR3BP) [5]. A peculiarity of missions 
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carried out near the natural (or artificial [6–8]) Lagrange points is 
that the formation may operate with an unobstructed view and 
is rarely affected by planetary perturbations (e.g. atmospheric and 
geomagnetic forces). For example, in the Sun–Earth system, the 
halo (or Lissajous) orbits in the vicinity of L2 point naturally avoid 
the Sun eclipse, and are therefore suitable for measuring the cos-
mic microwave background. Also, orbits around L1 point are never 
shadowed by Earth, and always view its sunlit hemisphere. There-
fore, they usually serve as an interplanetary early warning storm 
monitor for solar disturbances [9].

Even though formation flying around Lagrange point orbits pro-
vides such valuable features as low-cost replacement of a faulty 
agent, it also poses a great challenge. In fact, since orbits around 
the collinear points are inherently unstable, a continuous active 
control is necessary to achieve long-term bounded relative motion. 
To that end, a number of formation control algorithms have been 
discussed, which can be roughly categorized into tight [10–13] and 
loose [14–16] strategies. The tight control method consists in sta-
bilizing the spacecraft relative motion with respect to a specified 
nominal trajectory, using Lyapunov or eigenvalue stability theorem. 
The loose control concept, instead, relies on invariant manifolds 
theory, using the fact that the relative motion evolves and is al-
ways restricted within a bounded region provided some natural 
low-drift regions are found.

Thus far, much effort has been devoted to the study of forma-
tion flying around Lagrange point orbits, however several existing 
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Nomenclature

ac
k,as

k,bc
k,bs

k, cc
k, cs

k k-th order coefficients of Fourier series
e relative position errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . km
E set of edges
f control force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N
G adjacency matrix (with entries 

[
gij

]
)

G communication topology graph
I identity matrix
L Laplacian matrix (with entries 

[
li j

]
)

m mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
N number of spacecraft
n order of Fourier series
nr angular velocity of relative orbit . . . . . . . . . . . . . . rad/day
O zero matrix
O reference frame origin
r position vector (with r = ‖r‖), . . . . . . . . . . . . . . . . . . . . . . au
S spacecraft
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . days
T period of nominal halo orbit . . . . . . . . . . . . . . . . . . . . . . days
T rotating reference frame
u propulsive (control) acceleration . . . . . . . . . . . . . . . . . m/s2

V set of vertices
x, y, z components of position vector in rotating frame
x̂, ŷ, ẑ unit vectors of rotating coordinate axes

X state vector (with X �
[

rT , ṙT
]T

)

� v velocity change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
� state-transition matrix
μ normalized Earth mass
ρx,ρy,ρz components of relative position vector . . . . . . . . . . km
ρ relative position vector with respect to nominal 

orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . km
υ vertex
ω angular velocity vector of rotating frame (with 

ω = ‖ω‖) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad/day

Subscripts

0 initial value
E S Earth-spacecraft
f final value
h halo orbit
i i-th spacecraft
S S Sun-spacecraft

Superscripts

T transpose
� desired value
· time derivative
∧ unit vector
∼ estimated value

problems yet need to be solved. First, the non-integrability nature 
of the CR3BP prevents from any analytical representation of a nom-
inal trajectory. Although some closed-form solutions have been 
discussed in the literature, however, they rely on a linearization 
procedure or on perturbation expansion-based approximations [5,
17]. The linearized solution is well suited only for small-distances 
(relative to the Lagrange points), whereas the typical example of 
an algebraic solution is the well-known third-order approximation 
discussed by Richardson [17], which however leads to a remark-
able deviation from the nominal orbit after about one half period 
only. In addition, previous studies [18,19] on formation keeping 
algorithms around Lagrange point orbits assume the neighboring 
spacecraft velocity and its mass to be precisely known, which is 
usually a demanding task for an onboard measuring system. To re-
duce the operating costs and the spacecraft weight, the problem 
of guaranteeing the system stability even in the presence of veloc-
ity or mass uncertainties becomes crucial, especially when faults 
or high noises reduce the effectiveness of the on-board sensors. Fi-
nally, most of the existing works [10–13,19,20] on this issue are 
limited to a leader-follower formation structure, rendering an in-
herent weakness that the leader is a single point of failure for the 
whole system. To mitigate these risks, the system robustness and 
its overall redundancy need to be strengthened.

Recognizing these open issues, a distributed framework of mul-
tiple spacecraft formation flying around Lagrange point orbits is 
here discussed. The contributions of this paper are twofold. First, 
the nominal trajectory is parameterized via high-order Fourier se-
ries expansions. Unlike the classical third-order solution that suf-
fers from a huge amount of algebraic manipulations, the Fourier 
series-based solution relies on a least-square approach and pro-
vides a better accuracy as the order of the expansion series in-
creases. Note that the Fourier series-based approach has been re-
cently [21] used to continuate the spacecraft orbit, for long term, 
in the real Solar System model. Compared to the existing works, 
the approximate closed-form description of the nominal trajectory 
captures most nonlinearity. This results in a propellant reduction 
necessary to maintain the formation around the nominal trajectory. 

Second, two distributed adaptive synchronization control strate-
gies are proposed to account for unmeasurable spacecraft velocities 
and mass uncertainties. By exploiting the available information ex-
change among the formation, every spacecraft updates its state 
using the data flow transmitted from its local neighbours (not nec-
essarily limited to the nearest one, as is discussed in Ref. [22]), so 
that the overall redundancy and group robustness are enhanced. 
Besides, the proposed consensus-based control law also guarantees 
a time-balanced (synchronization), as well as a high tracking accu-
racy.

This paper is organized as follows. Section 2 illustrates the 
mathematical model in the Sun–Earth CR3BP, and presents an ap-
proximate analytical solution to the nominal orbit via Fourier se-
ries expansions. Section 3 provides two distributed control strate-
gies using mutual information couplings to account for unmea-
surable velocities and mass uncertainties, respectively. The control 
effectiveness is then investigated in Section 4 by means of some 
numerical simulations. Finally, some concluding remarks are given 
in Section 5.

2. Problem formulation

In this section, the Sun and Earth are considered as the two pri-
mary bodies, and the halo orbit around L2 point is designated as 
the nominal trajectory. To describe the relative motion equation of 
the formation system, it is useful to introduce first the mathemat-
ical model used in CR3BP.

2.1. Equations of motion

The dynamic model describing the Sun–Earth CR3BP is formu-
lated in a classical rotating coordinate system T

(
O ; x̂, ŷ, ẑ

)
, see 

Fig. 1. The origin O of the reference frame is centered at the sys-
tem barycenter, while the plane 

(
x̂, ŷ

)
coincides with the ecliptic 

plane, x̂ axis points to the Earth and ẑ axis is positive in the 
direction of the angular velocity vector ω. For convenience, a nor-
malized set of units is introduced, such that the total mass of 
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