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A pseudo-analytic approach is applied to determine the optimal nozzle Mach number for maximizing the 
altitude of a sounding rocket flying in a standard atmosphere. The one-dimensional rocket momentum 
equation including thrust, gravitational force and aerodynamic drag is considered, for which it is 
impossible to obtain an analytic solution in a general form. In this work, a piecewise pseudo-analytic 
approach with a constant parameter introduced to make the velocity integral in the governing equation 
analytic is applied. The rocket flight in the standard atmosphere is analyzed by dividing the entire range 
into small intervals where the drag parameter and the gravitational acceleration can be treated as a 
constant in each interval. A characteristic equation exists and provides accurate predictions of the optimal 
nozzle Mach number for maximizing the altitude at burn-out state or at apogee.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

In most cases, the design target of a sounding rocket is the 
altitude at burn-out state or at apogee. The rocket altitude can 
change according to the ejection conditions of the propellant jet 
through a supersonic nozzle. Therefore, it is necessary to deter-
mine an optimal thrust condition for maximizing the altitude for a 
given launching condition, known as the Goddard problem, which 
has been extensively studied using variation methods, asymptotic 
approaches, and optimal control theories [1–4]. A previous study 
[5] presented an analytic approach to determine the optimal con-
ditions for the typical situations where an analytic solution exists. 
This approach was extended to rocket flight in a standard atmo-
sphere [6] by applying the divide-and-conquer strategy. However, 
the existence of an analytic solution requires the balance of the 
three forces and thus requires control of the thrust. Most sound-
ing rockets use a constant mass flow rate of propellant through 
a fixed nozzle in which the rocket motion cannot be solved with 
an analytic approach. Thus, these analytic approaches have serious 
limitations in real applications. A successive study [7], also exploit-
ing the divide-and-conquer strategy, presented a pseudo-analytic 
approach to overcome this limitation and showed that the optimal 
mass flow rate of a rocket could be determined. However the noz-
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zle Mach number that is another key parameter for the optimal 
thrust condition was not considered.

Hence in the present study an effective method will be es-
tablished to determine the optimal nozzle Mach number of a 
sounding rocket. The present study extends the pseudo-analytic 
concepts and methods of the previous studies [6,7] in order to 
determine the optimal nozzle Mach number for the maximum al-
titude at burn-out state or at apogee. It is difficult to determine 
the optimal mass flow rate and the optimal nozzle Mach number 
simultaneously, since the two key parameters are highly coupled 
in the thrust function. Hence, in the present study, an iterative 
approach is used. First, the optimal mass flow rate is obtained 
with a fixed nozzle Mach number, and then the optimal nozzle 
Mach number is calculated with the fixed optimal mass flow. The 
present methods will give a way to determine the full parameters 
for the optimal thrust condition and thus valuable information for 
an effective design of a sounding rocket.

The motion of a sounding rocket launched in the vertical direc-
tion is considered for simplicity. Then, the motion of a sounding 
rocket can be described using a one-dimensional momentum equa-
tion that includes thrust, gravitational force, and aerodynamic drag. 
The rocket model considered in the present study is the same one 
used in the previous study [6,7] and is a simplified model based 
on the Korea Sounding Rocket Program (KSR II and III) [8]. The 
air density is calculated based on the US standard atmosphere [9]
and the variable gravitational acceleration changing with altitude 
is considered.
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Nomenclature

A Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

F thrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N
g gravitational acceleration . . . . . . . . . . . . . . . . . . . . . . . . . m/s2

h altitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
J pseudo drag parameter
K drag parameter
M Mach number
m rocket mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
ṁ rate of rocket mass change or mass flow rate of 

propellant jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/s
q velocity parameter for rocket velocity . . . . . . . . . . . . . m/s
r control parameter for rocket velocity . . . . . . . . . . . . . m/s
ue exhaust velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
v rocket velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
p static pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
x non-dimensional scale to express rocket velocity
β coefficient of derivative of mass with respect to con-

trol parameter
γ specific heats ratio

ϕ parameter to express derivative of pseudo drag param-
eter

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

ψ parameter to express intermediate state between 
burn-out state and apogee

� rocket mass ratio between total mass and dry mass
ω rocket mass ratio between adjacent intervals

Subscripts

a ambient air
b burn-out state
e exhaust condition at rocket nozzle exit
i index of an intermediate divided interval
k index of iteration step
n index of final divided interval
o ground state
s stationary state (apogee)
temp temporary value
∗ matching at burn-out state

Fig. 1. Schematic of a rocket and applied forces.

2. One-dimensional rocket momentum equation

2.1. Governing equation in boost phase

The one dimensional motion of a rocket climbing in the ver-
tical direction is considered in the present study. Fig. 1 shows 
the schematic of the one-dimensional rocket motion and applied 
forces.

The motion of a rocket in boost phase can be described with 
the following one-dimensional rocket momentum equation includ-
ing thrust, gravitational force and aerodynamic drag as follows 
[10–12]:

m
dv

dt
= F − mg − K v2, (2.1a)

F = ṁue + Ae(pe − pa), (2.1b)

K = S

2
Cdρa. (2.1c)

The rocket mass decreases with the mass flow rate of propellant. 
The mass flow rate is equal to the rate of change of the rocket 
mass and has a negative sign. The exhaust velocity ue has a nega-
tive sign, since its direction is opposite to the rocket velocity; thus, 
the velocity thrust term ṁue has a positive sign.

In case the thrust condition is fixed, we cannot obtain an an-
alytic solution in a general form due to the nonlinear behavior 
of the governing equation. The previous study [7] suggested a 
pseudo-analytic approach to avoid such difficulties, such as extend-
ing the “divide-and-conquer” strategy. The governing equation can 
then be represented as follows:

dv

r2 − v2
= J

ṁ

dm

m
, (2.2a)

J = K
q2 − v2

r2 − v2
, (2.2b)

q =
√

F − mg

K
=

√
ṁue + Ae(pe − pa) − mg

K
, (2.2c)

r =
√

ṁue

K∗
, (2.2d)

K∗ = Kb

(
1 + Ae(pe − pa,b) − mb gb

ṁue

)−1

. (2.2e)

The piecewise pseudo-analytic solution of the governing equation 
at the state (n) is expressed in the following form.

vn = r
xn − 1

xn + 1
, (2.3a)

xn = exp

[
− 2ue

K∗r

n∑
i

J̄ i ln(ωi)

]
= exp

[
−2r

ṁ

n∑
i

J̄ i ln(ωi)

]
,

(2.3b)

ωn = mn−1

mn
> 1. (2.3c)

The altitude of a rocket at burn-out state can be obtained using 
the time integration of the velocity as follows:

hb =
tb∫

o

vdt = 1

ṁ

b∑
i=1

mi∫
mi−1

r
x − 1

x + 1
dm. (2.4)

The above integral cannot be solved analytically, and thus 
should be calculated numerically. In the present study, numerical 
integration using Simpson’s rule [14] is applied.

2.2. Governing equation in coast phase

After the propellant of the rocket is totally consumed, the flight 
phase turns into coast phase, where the rocket climbs under its 
own decreasing inertial speed until the stationary state or apogee. 
The rocket momentum equation then becomes as follows:
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