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More than 90% of the space objects orbiting around the earth are space debris. Since the orbits of these 
debris often overlap the trajectories of spacecraft, they create a potential collision risk. The problem of 
removing the most dangerous space debris can be modeled as a biobjective time dependent traveling 
salesman problem (BiTDTSP). In this paper, we study an approach based on a branch and bound 
procedure to determine the Pareto frontier of the BiTDTSP.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Since the launch of the first satellite in 1957, an increasing 
number of objects has been put into orbit around the earth. The 
number of space objects with diameter above 10 cm is estimated, 
nowadays, at about 15,000. Only 10% of these objects are oper-
ational, the other objects constitute space debris. Even if future 
launches are suspended, the number of space debris will continue 
to increase, e.g. owing to collisions between debris, making the 
collision with an operational satellite more probable [10]. Since 
consequences of collisions with debris may prove dramatic, avoid-
ance maneuvers or missions to remove debris are necessary [5]. As 
removing all space debris would be quite expensive, the idea is to 
determine the debris which are more likely to cause collisions and 
remove them at least cost. Removal is performed by achieving a 
space rendezvous between a moving space vehicle and each debris 
followed by a soft capture using a robotic arm. The shuttle has to 
meet each debris on its orbit until all debris have been dealt with 
and then return to its initial orbit. This tour has to be achieved 
in the less expensive and the fastest possible way. Most collisions 
are not debris/satellite but rather debris/debris and result in an in-
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creasing number of space debris [9,1]. So the earlier the removal 
is finished, the less new debris are generated.

In this article, we study the problem of removing a list of space 
debris and extend the results obtained in [12]. We propose an ex-
act algorithm based on a branch and bound procedure to compute 
the set of non-dominated (cost, duration) vectors and give for each 
of these vectors a feasible solution. Two specificities that make our 
model more realistic are taken into account: between each pair of 
targets, several transfer possibilities, with different costs and times, 
are considered. These costs and times depend on the start time 
from the initial target in the pair. Therefore, the problem is mod-
eled as a biobjective time dependent traveling salesman problem 
defined on a multigraph. To the best of our knowledge, BiTDTSP 
has not been studied before, although several articles study the 
time dependent traveling salesman problem (TDTSP) and the biob-
jective traveling salesman problem (BiTSP). TDTSP is a variant of 
TSP where distances depend on the arrival time to each vertex. 
Malandraki and Daskin [13] described dynamic programming (DP) 
algorithms for TDTSP extended by Bellman [3] and finally Held 
and Karp [7]. Schneider [17] also proposed a simulated annealing 
heuristic to deal with TDTSP. BiTSP has been addressed by several 
authors. Gendreau et al. [4] used the ε-constraint method to effi-
ciently generate the Pareto front of the traveling salesman problem 
with profits. Schmitz and Niemann [16] were interested in a BiTSP 
problem motivated by various applications in the context of service 
delivery in which the second objective relates to priorities among 
locations to be visited. Paquette and Stutzle [14] analyzed algorith-
mic components of Stochastic local search (SLS) algorithms for the 
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Fig. 1. The transfer orbit of the space shuttle using the elliptical maneuver.

multiobjective traveling salesman problem. Based on the insights 
gained, they engineered SLS algorithms for this problem. Lust and 
Jaszkiewicz [11] proposed a heuristic resolution based on the two-
phase local search method with speed-up techniques for BiTSP.

The paper is organized as follows. In Section 2, we model the 
problem of removing dangerous space debris. The proposed ap-
proach is presented in Section 3. Section 4 is devoted to implemen-
tation issues. Computational experiments and results are reported 
in Section 5 and conclusions are provided in a final section.

2. Problem description

2.1. Context and notations

Given n debris to be removed, the space shuttle has to move 
from its own orbit and visit the n debris in order to collect them 
and then return to its first orbit. The total quantity of fuel burned 
during each transfer from a debris i to a debris j, denoted by ci j , 
represents the transfer cost. The duration of the transfer is denoted 
by dij . The quantity of fuel burned during the mission should not 
exceed the shuttle capacity, thus the cost cannot exceed a fixed 
cost cmax . Moreover, the duration of the mission should not exceed 
a fixed duration dmax . We assume here that the mission is not car-
ried out by an unmanned space shuttle. To remove each debris, the 
shuttle has to perform a rendezvous with each debris on its orbit. 
Thus in the following we associate each debris with its orbit. Costs 
and durations depend on the way the rendezvous is achieved.

A space rendezvous between a debris and a space shuttle is 
an orbital maneuver where both arrive at the same orbit and ap-
proach to a very close distance. There are several ways to achieve a 
space rendezvous as shown in [6,19,18]. In our case, we have cho-
sen to perform a rendezvous following the Lambert method where 
the shuttle moves between the two orbits undergoing exactly two 
pulses. Fig. 1 shows how the transfer is performed in the Lam-
bert elliptical case. The cost of this transfer is the quantity of fuel 
burned in order to perform the first and second pulses.

For each debris i, ti denotes the time at which the shuttle 
reaches the orbit of debris i. Once the shuttle has reached orbit i, it 
can immediately start the next transfer to reach another orbit j or 
wait before beginning the transfer. Indeed, waiting on an orbit may 
be cheaper and/or quicker to reach the next orbit. The duration of 
the transfer is the sum of the waiting time in the departure orbit 
and the travel time to the arrival orbit. In the following we assume 
that each elementary transfer requires a minimum duration δttrans

and a minimum cost δcmin . We assume as well that the service 
time on an orbit i takes a duration of δtservi .

2.2. Formulation of the problem

The studied space objects and the possible transfers between 
their orbits are modeled by a complete valued digraph G = (V , A)

where V represents the set of object’s orbits numbered from 0
to n. Vertex 0 represents the shuttle and vertices from 1 to n rep-
resent the n debris. The set A corresponds to the set of feasible 
transfers between orbits. Several arcs may link each pair of or-
bits depending on the moment on when the shuttle reaches the 
departure orbit. To each 3-tuple (i, j, ti), corresponds a set of fea-
sible transfers Aij(ti). Each element of Aij(ti) induces a bivalued 
arc linking i to j whose value is a pair (ci j, dij) corresponding to 
the cost and duration of the travel. As the arcs representing possi-
ble transfers depend on the time at which the shuttle reaches the 
departure orbit, G is a dynamic multigraph. In the Fig. 2, we have 
shown the way the digraph is constituted as the shuttle performs 
its mission.

After it reaches an orbit i, the shuttle must serve it before go-
ing on. Thus, the shuttle can leave the orbit i at least at tid =
ti + δtservi . Due to mission duration constraints, the shuttle should 
leave the orbit i before an instant limit til . When the shuttle leaves 
i at til , it has barely time to achieve the mission before t0 + dmax . 
Thus, if the shuttle reaches l after visiting V ′ ⊂ V debris, one has

til = t0 + dmax − (
n + 1 − |V ′|) × δttrans −

∑
i∈V \V ′

δtservi − δttrans

In the equation above, 
(
n + 1 − |V ′|) × δttrans is the least time 

needed to travel to each unvisited debris, 
∑

i∈V \V ′
δtservi is the time 

needed to serve debris and δttrans is required to go back to the 
first orbit. The duration of time corresponding to possible depar-
ture times is discretized using a time step δt . Hence, the transfer 
can start at any time tid + w × δt , where w ∈ I(ti) and I(ti) de-
termines the set of possible departure times if the shuttle reaches 
orbit i at ti that is I(ti) = {0, 1, ..., � til

−tid
δt �}.

For each departure time several transfer durations are possible, 
the set of possible durations is denoted as D . A departure time ti , 
w ∈ I(ti) and transfer duration p ∈ D define a new arc allowing 
the shuttle to reach j at t j = tid + dij(ti, w, p). The valuation of 
this arc is:

(
ci j(ti, w, p),dij(ti, w, p)

)
.

The transfer possibilities can be seen in Fig. 3.

3. Solution approach

3.1. Preprocessing

The cardinality of Aij(ti) depends on the number of possible 
departure times from i and on the number of possible durations 
to perform the transfer from i to j. Therefore Aij(ti) may contain 
a very large number of possible transfers. The computation of the 
cost corresponding to each transfer possibility using Lambert al-
gorithm is very time-demanding (see Section 5.2.2). The algorithm 
spends much more time computing transfer costs than optimizing 
the shuttle trajectory. Therefore, optimizing the algorithm perfor-
mances requires limiting the number of calls to the cost computa-
tion function. This is achieved by reducing the cardinality of Aij(ti)

as will be seen in Section 5.2.1.

3.2. The branch and bound procedure

In order to enumerate the non-dominated vectors for BiTDTSP, 
we propose a branch and bound enumeration scheme. In our case, 
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