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An efficient Navier–Stokes solver for the infinite-swept wing problem is presented. The new flow 
solution, that reproduces correctly the physics responsible for cross-flow effects, is obtained around a 
two-dimensional stencil. On the contrary, existing state-of-the-art methods rely on a three-dimensional 
stencil. Numerical details are followed by an extensive validation campaign, including steady and 
unsteady compressible flows. The test cases are for single and multi-element aerofoils in both laminar 
and turbulent regimes. Under identical conditions (numerical settings, grids, etc.), the computational cost 
of the proposed solver was reduced by at least 75% compared to that of existing state-of-the-art methods. 
This was also confirmed employing various turbulence models. With a limited effort required to enhance 
an existing computational fluid dynamics solver (either two or three-dimensional), the infinite-swept 
wing method was implemented in an industrial-grade package used across Europe for rapid engineering 
analysis.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Industrial aircraft design proceeds through a series of maturity 
gates (MG). At the early stages of this process, designers explore a 
large parameter space relying heavily on empirical and linear cor-
relations [1]. In order to down-select the final aircraft concept, the 
design parameters are tightened and addressed in ever increas-
ing detail [2]. At MG 5, denoted “freeze of concept” in industrial 
jargon, the shape and structural layout are converged and the air-
craft target loads are set. Design target loads are the limiting loads 
that an aircraft or aircraft component must be designed to with-
stand. The objective of MG 5 is to anticipate the certification loads 
level, and issue this data as target loads. It is critical to limit the 
risk in setting these target loads [3] because: a) if the target loads 
are underestimated, as revealed following flight test, then expen-
sive re-design is often required incurring the costs and penalties 
arising from programme delay; and b) if the target loads are over-
estimated, the aircraft will be heavier than needed with degraded 
performances.

* Corresponding author.
E-mail address: A.Da-Ronch@soton.ac.uk (A. Da Ronch).

The analysis process to establish limit loads is computation-
ally demanding as it consists of a very large number of conditions 
across the loads envelope. Despite a number of simplifications are 
introduced (linearised aerodynamics, weak coupling between dis-
ciplines, etc.), the number of load cases for certification [4], in-
cluding ranges in Mach number, altitude, payload and fuel mass, 
exceeds easily several hundreds of thousands.

Today, the solution of the Navier–Stokes (NS) equations is 
recognised as a prerequisite for realistic flow applications, but 
the associated computational costs of the three-dimensional (3D) 
problem become prohibitive when confronted with the number of 
load cases. Therefore, researchers have proposed two stratagems 
to overcome this problem. The first stratagem concerns the ap-
proximation of the output quantities of interest, e.g. aerodynamic 
loads, across the design envelope exploiting efficient and accu-
rate adaptive design of experiments [5] and surrogate modelling 
techniques [6]. The advantage is that the use of off-the-shelf com-
putational fluid dynamics (CFD) packages is straightforward. The 
second stratagem consists of applying a number of simplifying as-
sumptions in the solution of the NS equations, making calculations 
cheaper [7,8]. The advantage of this approach is the ability to find, 
for a particular problem, a balance between the approximation of 
the solution and the computational efficiency of the approxima-
tion. This work, specifically, addresses the second point.
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Nomenclature

b Wing span, [m]
k Reduced frequency
M Mach number
R Rotation matrix
u, v, w Velocity components, [m/s]
V Velocity vector, [m/s]
Re Reynolds number
Pr Prandtl number
� Stress tensor
S Velocity gradients tensor
q̇ Heat flux vector

Greek

α Angle of attack, [deg]
β Side-slip angle, [deg]
� Wing sweep angle, [deg]

Operators

: double scalar product
⊗ dyadic product

Abbreviations

2D Two-dimensional
3D Three-dimensional
AR Aspect ratio
CFD Computational fluid dynamics
ISW Infinite swept wing
LLT Lifting line theory
MG Maturity gate
NS Navier–Stokes
NLF Natural Laminar Flow
RANS Reynolds-averaged Navier–Stokes
SA Spalart–Allmaras
URANS Unsteady Reynolds-averaged Navier–Stokes
VLM Vortex lattice method

Indexes

′ Body-attached frame of reference
0 Mean value
A Amplitude
∞ Freestream
: double scalar product
⊗ dyadic product

Rapid CFD methods currently employed in pre-MG 5 are de-
rived combining Prandtl’s lifting line theory (LLT) or the vortex 
lattice method (VLM), which are linear 3D aerodynamic meth-
ods, with a two-dimensional (2D) solution of the NS equations. 
The resulting aerodynamic predictive tool, often referred to as the 
quasi-3D method, is nonlinear because sectional flow nonlineari-
ties are obtained from a 2D CFD analysis. As the LLT or the VLM 
are inexpensive, the overall cost of a quasi-3D analysis is compara-
ble to that of a 2D CFD analysis. Reference [9] discussed the design 
process of the high-lift devices of an Airbus A380-like configura-
tion and the relative challenges encountered in the development 
phase. The aerodynamic design was built around the quasi-3D 
method from the early stages of the design process to obtain a 
pre-optimised shape that was wind tunnel tested. Reference [10]
exercised the quasi-3D method for the optimisation of a flexible 
high-lift wing configuration. Another application concerning drag 
minimisation was presented in Ref. [11]. Therein, the VLM was 
corrected with the MSES aerofoil predictions [12] based upon the 
solution of the Euler equations coupled with an integral formu-
lation of the boundary layer equations, with a built-in transition 
model. The resulting tool was limited to low Reynolds number 
aerofoils. Other application areas of the quasi-3D method may be 
found in Refs. [2,13].

The reasons that the quasi-3D aerodynamic method finds large 
applicability for industrial design are: a) no detailed 3D geome-
try information is needed, relying instead on planform data and 
known aerofoil sections from available databases; b) minimum 
computational requirements, often not more than several hours 
of wall clock time for complete polars at various Mach numbers; 
and c) the easiness to introduce multi-physics considerations (ic-
ing, control sizing and allocation, etc.) without extra complication. 
It is worth observing that the references mentioned in the previous 
paragraph, and the references therein, rely on a 2D flow analysis 
to correct the predictions obtained from a linear 3D aerodynamic 
model. This is a poor choice in lieu of various experiments [14]
showing that cross-flow effects, around a swept wing, strongly in-
fluence the boundary layer separation as well as the position of 
shock waves. Generally, these un-modelled effects are included via 
knowledge-based corrections, which are also a source of inaccu-

racies for less-conventional wing planforms departing from the 
original database.

This study is part of a larger on-going effort at the Univer-
sity of Southampton to deliver, within an industrial design en-
vironment, novel computationally efficient methods to calculate 
dynamic aeroelastic loads around complete aircraft. The aim of 
this work is to report on the development of a computation-
ally efficient aerodynamic method suitable for aircraft preliminary 
sizing studies, improving upon existing state-of-the-art methods. 
The technical objectives are to: a) discuss the resolution of the 
NS equations for the specific problem of an infinite-swept wing 
(ISW) on a 2D grid stencil; b) present a thorough validation 
study of the proposed method for a number of steady and un-
steady flow problems, using two different turbulence models; and 
c) demonstrate and quantify the performance gains for industry-
relevant test cases. The proposed methodology has been imple-
mented within the DLR-Tau flow solver, where it is referred to 
as the 2.5D+ approach to recall the enhanced (computational and 
convergence) properties in comparison with existing methods. To 
note that our work goes beyond that presented in Ref. [15] where 
steady-state flows are considered around simple configurations and 
an assessment of the performance improvements is missing.

Direct applications of the 2.5D+ solver within an industrial 
setting are the exploration of the flight envelope for a fixed con-
figuration, including transient analyses when needed, and the op-
timisation of the aerodynamic shape (control effectors size and 
allocation, wing twist, etc.).

The paper continues in Section 2 with a brief overview of the 
CFD solver used in this work. Section 3 explains the underlying 
methodology and discusses the implementation details of the pro-
posed flow analysis. Then, Section 4 focuses on results for steady 
and unsteady flow problems. Finally, conclusions are given in Sec-
tion 5.

2. Flow solver

The flow solver employed in this study is DLR-Tau [16], a fi-
nite volume based CFD flow solver used by a number of aerospace 
industries across Europe. The DLR-Tau solver uses an edge-based 
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