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This paper copes with parameter-robust controller design for transportation system by multiple 
unmanned aerial vehicles. The transportation is designed in the form of string connection. Minimal state-
space realization of slung-load dynamics is obtained by Newtonian approach with spherical coordinates. 
Linear quadratic Gaussian / loop transfer recovery (LQG/LTR) is implemented to control the position and 
attitude of all the vehicles and payloads. The controller’s robustness against variation of payload mass 
is improved using parameter-robust linear quadratic Gaussian (PRLQG) method. Numerical simulations 
are conducted with several transportation cases. The result verifies that LQG/LTR shows fast performance 
while PRLQG has its strong point in robustness against system variation.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Recently, unmanned aerial vehicles (UAVs) are getting attention 
for both military and civilian uses. In the future, transportation us-
ing UAVs is also expected to be common, but a small light UAV 
generally does not have enough power to lift a heavy load. Rather 
than employing a larger UAV, cooperation of multiple UAVs can 
be an efficient approach for transporting various types of payload. 
Interconnection of multiple UAVs results in complicated equations 
of motion, as each UAV heavily affects the motion of the others. 
Importance and possibility of employing multiple UAVs in trans-
portation has been mentioned in other previous studies [1]. Al-
though there are many possible ways of cooperation, such as rigid 
gripping with clamps [2] and bar joint, string connection is cho-
sen in this study to maintain the degree of freedom of each UAV 
as shown in Fig. 1.

In the previous studies, a single aircraft lifting one payload 
with a long string has been considered [3,4]. As these cases as-
sume a sufficiently long pendulum, coupling effects or aerody-
namic disturbances on payload are negligible, and thus whole 
system does not have to be included in the model. To consider 
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Fig. 1. Transportation system with string connections.

coupling effects into model, Maza et al. solved this problem us-
ing Kane method [5–7]. On the other hand, Bisgaard et al. [8,9]
employed Udwadia–Kalaba Equation (UKE), which is more efficient 
in expressing constrained dynamics. Existing modeling techniques, 
both Kane and UKE method, give the precise model of slung load 
transportation system, while state-space representations are not 
minimal. As one string connection reduces one degree of free-
dom, the minimum number of states is reduced by the number 
of strings. The existence of superficial states leads to a system 
model absent of controllability. Since the number of system vari-
ables is large and the model is complicated, model reduction is 
not easy. Our previous work [10] using UKE method, therefore, 
was not able to apply LQ-based controllers. To circumvent the con-
trollability problem, it is suggested to utilize the combination of 
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spherical coordinates and Cartesian coordinates [11]. The equa-
tion of motion is derived by Newtonian approach as it is easier 
to generalize the equation of motion compared to the Lagrangian 
approach. Unlike previous methods, tensile forces are computed by 
matrix inversion with inclusion of internal force into the state vec-
tor.

Stability analysis and control of the modeled system is an-
other major issue in this paper. Two approaches are possible for 
control design: control of each UAV with respect to external dis-
turbance including the effect of tension and control design con-
sidering the whole system. Previously, studies in [3,4] utilize the 
former and Michael et al. [12,13] perform only stability analy-
sis. In order to conduct aggressive control in response to pendu-
lum motion, whole system states are required to be controlled 
at the same time. This paper implements classical optimal con-
trol technique, linear quadratic Gaussian (LQG) technique [14]. 
LQG is useful to find gains for complicated transportation systems, 
while PID control, the most commonly used method, is hard to 
be implemented for large number of states. The tuning of PID 
gains is generally performed by trial-and-error and coupling be-
tween the longitudinal and lateral dynamics makes this tuning 
hard.

For practical use, it would be better to transport the payloads 
with various weights without changing the controller. Also, con-
tinuous loss of weight during transportation is common in agricul-
tural uses. To improve the robustness of the LQG controller, loop 
transfer recovery (LTR) [15,16] or parameter-robust linear quadratic 
Gaussian (PRLQG) [17,18] can be employed. PRLQG is expected to 
provide better robustness then LQG/LTR. In addition to our previ-
ous work [11], frequency-domain analysis on stability proves the 
improvements in robustness.

This paper is composed as follows. First, the mathematical 
modeling procedure of multi-UAV slung load transportation sys-
tem using Newtonian approach is presented. Second, control de-
sign theory of LQG/LTR and PRLQG method is briefly reviewed, and 
the transportation system model is reformulated into a moderate 
form for controller design process. Third, numerical simulation us-
ing MATLAB is conducted to analyze the performance of LQG/LTR 
and PRLQG controller. Finally, conclusion is drawn from numerical 
results and future work is suggested.

2. Slung load transportation system modeling

The following sub-sections suggest modeling procedure for 
transportation system with Newtonian approach, assuming no 
aerodynamic force or fluctuation in strings. Only gravitational 
force and lift force of UAVs are assumed to be significant in 
the model. The equation of motion is generalized with unspec-
ified number and shape of UAVs. General equation of motion is 
then reduced to two cases: one point mass transportation sys-
tem with one UAV, and one box payload transportation with four 
UAVs.

2.1. Derivation of general equation of motion

System variables of transportation system with unspecified 
number of UAVs and type of payloads are shown in Fig. 2. System 
variables chosen for modeling are position and attitude of the load 
(xL , θ L ), spherical coordinate angle of the strings (θ i ), and atti-
tude of each UAV (θ V ,i ), where attitude information is required for 
computing direction cosine matrices (CE

V ,i , C
E
L ) and spherical coor-

dinate (C ) is used to describe the motion of strings for constrained 
length. The spherical coordinate is determined so that zero angles 
yield hovering condition as follows:

Fig. 2. Transportation system nomenclature.

C(θ) = l

⎡
⎣ sinφ

− sin θ cosφ

− cos θ cosφ

⎤
⎦ (1)

Observing the geometric relationship in Fig. 2, position states of 
the UAVs (xV ,i ) are determined as follows:

xV ,i = xL +C
E
L xL,ai + C(θ i) −C

E
V ,ixV ,ai (2)

where xv,ai and xL,ai stands for the vectors from the center of 
mass of vehicle or load respectively to the attachment point of i-th 
string.

Applying Newton’s 2nd law of motion and Euler equation, the 
following equation is the basic idea of modeling:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

MV ,i ẍV ,i = FV ,i − ∑
TiC(θ i)/li

ML ẍL = FL + ∑
Ti C(θ i)/li

IV ω̇V ,i = τ V ,i − ∑
Ti(xV ,ai ×C

V ,i
E C(θ i))/li

ILω̇L = ∑
Ti(xL,ai ×C

L
E C(θ i))/li

(3)

where ML or MV ,i is a mass matrix with diagonal entries of mass 
mL or mV ,i , I is an inertial matrix, T is a tensile force, l is the 
length of a string, and ω is the angular velocity in the body frame. 
The forces FV ,i and FL include the gravitational force as

FV ,i = C
E
V ,iFM,i + MV ,ig, FL = MLg, g = [0,0, g]T (4)

The inputs of the system are given as external forces (FM,i ) and 
moments (τ V ,i ) regardless of UAV dynamics. This modeling is for 
general type and dynamics of UAV, and thus individual dynamics 
must be augmented separately.

Substitution of equation (2) into equation (3) yields relation-
ship among system variables and tensile forces. Although values of 
tensile forces are not measured, second-derivative terms and ten-
sile forces have linear relationship, and thus derivative terms can 
be computed as an inverse matrix form as follows:

[
ẍT

L θ̈
T
i ω̇T

L ω̇T
V ,i T i/li

]T =
⎡
⎢⎢⎣

MV ,i MV ,i C ′(θ i) MV ,iC
′ E
L xL,ai −MV ,iC

′ E
V ,ixV ,ai C(θ i)

ML 03×2 03×3 03×3 −C(θ i)

03×3 03×2 03×3 IV ,i xV ,ai ×C
V ,i
E C(θ i)

03×3 03×2 IL 03×3 −xL,ai ×C
L
E C(θ i)

⎤
⎥⎥⎦

−1

⎡
⎢⎢⎣

FV ,i − ∑
i MV ,i(G(θ i, θ̇ i) +G

E
L xL,ai −G

E
V ,ixV ,ai)

FL
τ V ,i
03×1

⎤
⎥⎥⎦

(5)

The prime mark notes for differentiation not along the time but 
along the spherical coordinate states of strings. To be specific, func-
tion C ′ and matrix C′ is computed as

C ′ �
[

dC

dθ

dC

dφ

]
, C

′xai �
[

dC

dφ
xai

dC

dθ
xai

dC

dψ
xai

]
(6)

where the differentiated result is similar to the gradient in that the 
required form is an augmented matrix.
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